Zobrazeno 1 - 3
of 3
pro vyhledávání: '"Edyta Kania-Strojec"'
Publikováno v:
Revista Matemática Complutense. 34:409-434
We consider a nonnegative self-adjoint operator L on $$L^2(X)$$ L 2 ( X ) , where $$X\subseteq {{\mathbb {R}}}^d$$ X ⊆ R d . Under certain assumptions, we prove atomic characterizations of the Hardy space $$\begin{aligned} H^1(L) = \left\{ f\in L^1
Autor:
Edyta Kania-Strojec, Marcin Preisner
Publikováno v:
The Journal of Geometric Analysis. 32
We study Hardy space $H^1_L(X)$ related to a self-adjoint operator $L$ defined on Euclidean domain $X \subseteq \mathbb{R}^d$. Under certain assumptions on the heat semigroup $\exp(-tL)$ we prove characterization of $H^1_L(X)$ by the Riesz transforms
Autor:
Edyta Kania-Strojec
We study Hardy spaces associated with a general multidimensional Bessel operator $\mathbb{B}_\nu$. This operator depends on a multiparameter of type $\nu$ that is usually restricted to a product of half-lines. Here we deal with the Bessel operator in
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e2d0c816d5039887a7aba744c4dfd6a3