Zobrazeno 1 - 5
of 5
pro vyhledávání: '"Edyta Bartnicka"'
Autor:
Metod Saniga, Edyta Bartnicka
Publikováno v:
Axioms, Vol 8, Iss 1, p 28 (2019)
In this paper, it is shown that there exists a particular associative ring with unity of order 16 such that the relations between non-unimodular free cyclic submodules of its two-dimensional free left module can be expressed in terms of the structure
Externí odkaz:
https://doaj.org/article/13999fff258244ebbc10f9ddf1e4a361
Autor:
Edyta Bartnicka
Publikováno v:
Results in Mathematics. 76
Given a ring $$T_n\ (n\geqslant 2)$$ T n ( n ⩾ 2 ) of lower triangular $$n\times n$$ n × n matrices with entries from an arbitrary field F, we completely classify the orbits of free cyclic submodules of $$^2T_n$$ 2 T n under the action of the gene
Autor:
Metod Saniga, Edyta Bartnicka
Let T n ( q ) be the ring of lower triangular matrices of order n ≥ 2 with entries from the finite field F ( q ) of order q ≥ 2 and let T n 2 ( q ) denote its free left module. For n = 2 , 3 it is shown that the projective line over T n ( q ) giv
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::963769755699ee60728ef21c4fca2ec4
http://arxiv.org/abs/1903.04287
http://arxiv.org/abs/1903.04287
Autor:
Andrzej Matraś, Edyta Bartnicka
Publikováno v:
Results in Mathematics. 70:567-580
We discuss the free cyclic submodules over an associative ring $R$ with unity. Special attention is paid to those, which are generated by outliers. This paper describes all orbits of such submodules in the ring of lower triangular $3$x$3$ matrices ov
Autor:
Edyta Bartnicka, Andrzej Matraś
We discuss the projective line $$\mathbb {P}(R)$$ over a finite associative ring with unity. $$\mathbb {P}(R)$$ is naturally endowed with the symmetric and anti-reflexive relation “distant”. We study the graph of this relation on $$\mathbb {P}(R)
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3cfdef50c57d3f16104a7451fa77fafc