Zobrazeno 1 - 10
of 146
pro vyhledávání: '"Edwards, Kenneth"'
Autor:
Allen, Michael A., Edwards, Kenneth
Publikováno v:
Journal of Integer Sequences 25(7) Article 22.7.1 (2022)
We consider two families of Pascal-like triangles that have all ones on the left side and ones separated by $m-1$ zeros on the right side. The $m=1$ cases are Pascal's triangle and the two families also coincide when $m=2$. Members of the first famil
Externí odkaz:
http://arxiv.org/abs/2201.13253
Autor:
Allen, Michael A., Edwards, Kenneth
Publikováno v:
The Fibonacci Quarterly, vol. 61 (2023), no.1, pp. 21-27
The number of ways to tile an $n$-board (an $n\times1$ rectangular board) with $(\frac12,\frac12;1)$-, $(\frac12,\frac12;2)$-, and $(\frac12,\frac12;3)$-combs is $T_{n+2}^2$ where $T_n$ is the $n$th tribonacci number. A $(\frac12,\frac12;m)$-comb is
Externí odkaz:
http://arxiv.org/abs/2201.02285
Autor:
Allen, Michael A., Edwards, Kenneth
Publikováno v:
Linear and Multilinear Algebra, vol. 72 (2024), no.13, pp.2091-2103
By considering the tiling of an $N$-board (a linear array of $N$ square cells of unit width) with new types of tile that we refer to as combs, we give a combinatorial interpretation of the product of two consecutive generalized Fibonacci numbers $s_n
Externí odkaz:
http://arxiv.org/abs/2107.02589
Autor:
Edwards, Kenneth, Allen, Michael A.
Publikováno v:
Journal of Integer Sequences 24, Article 21.3.8 (2021)
We consider the tiling of an $n$-board (a board of size $n\times1$) with squares of unit width and $(1,1)$-fence tiles. A $(1,1)$-fence tile is composed of two unit-width square subtiles separated by a gap of unit width. We show that the number of wa
Externí odkaz:
http://arxiv.org/abs/2009.04649
Autor:
Edwards, Kenneth, Allen, Michael A.
Publikováno v:
The Fibonacci Quarterly, Volume 57, Number 5, pages 48-53 (2019)
We consider the tiling of an $n$-board (a $1\times n$ array of square cells of unit width) with half-squares ($\frac12\times1$ tiles) and $(\frac12,\frac12)$-fence tiles. A $(\frac12,\frac12)$-fence tile is composed of two half-squares separated by a
Externí odkaz:
http://arxiv.org/abs/1907.06517
Autor:
Allen, Michael A., Edwards, Kenneth
Publikováno v:
Linear & Multilinear Algebra; Sep2024, Vol. 72 Issue 13, p2091-2103, 13p