Zobrazeno 1 - 4
of 4
pro vyhledávání: '"Edward Y. S. Liu"'
Autor:
Edward Y. S. Liu
Publikováno v:
The Ramanujan Journal. 56:911-929
Andrews introduced odd Durfee symbols to give an interesting combinatorial interpretation of $$\omega (q)$$ invoked by MacMahon’s modular partitions, where $$\omega (q)$$ is one of the mock theta functions defined by Watson. In analogy with Dyson
Publikováno v:
The Ramanujan Journal. 52:393-420
Let $p_k(n)$ be given by the $k$-th power of the Euler Product $\prod _{n=1}^{\infty}(1-q^n)^k=\sum_{n=0}^{\infty}p_k(n)q^{n}$. By investigating the properties of the modular equations of the second and the third order under the Atkin $U$-operator, w
Publikováno v:
International Journal of Number Theory. 15:1267-1290
We present a unified approach to establish infinite families of congruences for [Formula: see text] for arbitrary positive integer [Formula: see text], where [Formula: see text] is given by the [Formula: see text]th power of the Euler product [Formul
Autor:
Edward Y. S. Liu, Helen W. J. Zhang
Let $$\overline{p}(n)$$ denote the overpartition function. Engel showed that for $$n\ge 2$$ , $$\overline{p}(n)$$ satisfy the Turan inequalities, that is, $$\overline{p}(n)^2-\overline{p}(n-1)\overline{p}(n+1)>0$$ for $$n\ge 2$$ . In this paper, we p
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4d0f66ff11db4269e975539f7cbb0379
http://arxiv.org/abs/1808.05091
http://arxiv.org/abs/1808.05091