Zobrazeno 1 - 10
of 15
pro vyhledávání: '"Edward J. Dean"'
Publikováno v:
Journal of Non-Newtonian Fluid Mechanics. 142:36-62
The main goal of this article is to review various results and methods concerning the numerical simulation of Bingham visco-plastic flow; these results have been obtained from the early 1970s to now. We consider first the case of flow in cylindrical
Autor:
Roland Glowinski, Edward J. Dean
Publikováno v:
Comptes Rendus Mathematique. 341:375-380
In this Note we discuss the numerical solution of a two-dimensional, fully nonlinear elliptic equation of the Pucci's type, completed by Dirichlet boundary conditions. The solution method relies on a least-squares formulation taking place in a subset
Autor:
Edward J. Dean, Roland Glowinski
Publikováno v:
Comptes Rendus Mathematique. 339:887-892
We addressed, in a previous note [C. R. Acad. Sci. Paris, Ser. I 336 (2003) 779–784], the numerical solution of the Dirichlet problem for the two-dimensional elliptic Monge–Ampere equation, namely: det D 2 ψ = f in Ω, ψ = g on ∂Ω ( Ω ⊂ R
Autor:
Edward J. Dean, Roland Glowinski
Publikováno v:
Comptes Rendus Mathematique. 336:779-784
The main goal of this Note is to discuss a method for the numerical solution of the two-dimensional elliptic Monge–Ampere equation with Dirichlet boundary conditions (the E-MAD problem). This method relies on the reformulation of E-MAD as a problem
Publikováno v:
Applied Mathematics Letters. 15:505-511
In this article, we show that multigrid-like algorithms can be obtained by combining space decomposition with time discretization by operator splitting.
Autor:
Roland Glowinski, Edward J. Dean
Publikováno v:
Comptes Rendus de l'Académie des Sciences - Series I - Mathematics. 325:783-791
In this Note we describe a novel method for the solution of the Navier-Stokes equations for incompressible viscous fluids. This method, which can be viewed as an alternative to the methods of characteristics, takes advantage of a time discretization
Publikováno v:
Japan Journal of Industrial and Applied Mathematics. 13:495-517
We discuss in this article the numerical solution of the Cahn-Hilliard equation modelling the spinodal decomposition of binary alloys. The numerical methodology combines a second-order finite difference time discretization with a mixed finite element
Autor:
Edward J. Dean, Roland Glowinski
Publikováno v:
Partial Differential Equations ISBN: 9781402087578
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::63349e66b8ef9d86fa816aa1613226c9
https://doi.org/10.1007/978-1-4020-8758-5_3
https://doi.org/10.1007/978-1-4020-8758-5_3
Publikováno v:
Control Problems for Systems Described by Partial Differential Equations and Applications ISBN: 3540180540
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::5cdf6564b24ce4267da65c2d74d6d438
https://doi.org/10.1007/bfb0038743
https://doi.org/10.1007/bfb0038743
Publikováno v:
Control and Boundary Analysis ISBN: 9781574445947
Control and Boundary Analysis
Control and Boundary Analysis
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::1dc7f31f34553a2abbc038e3d1c57487
https://doi.org/10.1201/9781420027426.ch1
https://doi.org/10.1201/9781420027426.ch1