Zobrazeno 1 - 10
of 10
pro vyhledávání: '"Edward Hinojosa-Cardenas"'
Autor:
Filomen Incahuanaco-Quispe, Edward Hinojosa-Cardenas, Denis A. Pilares-Figueroa, Cesar A. Beltrán-Castañón
Publikováno v:
Information Management and Big Data ISBN: 9783031044465
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::82bf2b4b951cba143d56ba3f3fe525f2
https://doi.org/10.1007/978-3-031-04447-2_23
https://doi.org/10.1007/978-3-031-04447-2_23
Publikováno v:
FUZZ-IEEE
Multi-label classification problems exist in many real world applications where to each example in the dataset can be assigned a set of target labels. This paper presents a new two-step method for genetic learning of a fuzzy rule base for multi-label
Autor:
Edward Hinojosa Cardenas, Edgar Sarmiento-Calisaya, Guina Sotomayor Alzamora, Victor Cornejo-Aparicio
Publikováno v:
SAC
A natural language-based requirements specification tends to be full of requirements that are ambiguous, unnecessarily complicated, missing, wrong, duplicated or conflicting. Poor quality requirements often compromise the subsequent software construc
Publikováno v:
Advances in Fuzzy Logic and Technology 2017 ISBN: 9783319668291
EUSFLAT/IWIFSGN (1)
EUSFLAT/IWIFSGN (1)
This paper presents a Multi-Objective Evolutionary Algorithm (MOEA) for tuning type-2 fuzzy sets and selecting rules and conditions on Fuzzy Rule-Based Classification Systems (FRBCS). Before the tuning and selection process, the Rule Base is learned
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::157f386af2cef339fdb8761892ad1fd2
https://doi.org/10.1007/978-3-319-66830-7_35
https://doi.org/10.1007/978-3-319-66830-7_35
Publikováno v:
FUZZ-IEEE
In the last years, multi-objective evolutionary algorithms have been used to learn or tune components of fuzzy systems from data. The suitability of such algorithms for this task is due to the possibility of balancing the conflicting objectives of ac
Publikováno v:
IFSA/NAFIPS
The objective of this work is to present an improved version of a method to learn fuzzy classification rules from data by means of a multi-objective evolutionary algorithm and the iterative approach. The work presented here derives from a preliminary
Publikováno v:
SBRN
This paper proposes the use of a multiobjective genetic algorithm to tune fuzzy partitions and t-norm parameters in Fuzzy Rule Based Classifications Systems (FRBCSs). We consider a rule base and a data base already defined and apply a multiobjective
Publikováno v:
FUZZ-IEEE
In this paper, we propose a multiobjective genetic method to learn fuzzy rules and optimize fuzzy sets in Fuzzy Rule Based Classification Systems (FRBCSs) aiming at finding a balance between the accuracy and interpretability objectives. The proposed
Autor:
Paccotacya Yanque, R. Y. G., Edward Hinojosa Cardenas, Rucano Alvarez, H. C., Iquira Bacerra, D. A., Apaza Aceituno, R. G., Pancca Mamani, I. S., Sanchez Yanque, R., Diaz Ventura, C. E. N.
Publikováno v:
Scopus-Elsevier
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::a2f88770cacf212e30689d48becda1d3
http://www.scopus.com/inward/record.url?eid=2-s2.0-85060651800&partnerID=MN8TOARS
http://www.scopus.com/inward/record.url?eid=2-s2.0-85060651800&partnerID=MN8TOARS