Zobrazeno 1 - 10
of 25
pro vyhledávání: '"Eduardo Ramos-Diaz"'
Autor:
Alberto J. Rosales-Silva, Jean Marie Vianney Kinani, Mario Dehesa‐González, Francisco J. Gallegos-Funes, Eduardo Ramos-Diaz
Publikováno v:
Color Research & Application. 45:825-836
Publikováno v:
Revista Facultad de Ingeniería Universidad de Antioquia, Iss 56, Pp 111-121 (2010)
En este artículo, se propone un método novedoso que permite generar secuencias de video en 3D usando secuencias de video reales en 2D. La reconstrucción de la secuencia de video en 3D se realiza usando el cálculo del mapa de profundidad y la sín
Externí odkaz:
https://doaj.org/article/47830d9e1aa34723ace77ae7d981c71a
Publikováno v:
Revista Facultad de Ingeniería Universidad de Antioquia, Iss 56 (2013)
In this paper, a novel method that permits to generate 3D video sequences using 2D real-life sequences is proposed. Reconstruction of 3D video sequence is realized using depth map computation and anaglyph synthesis. The depth map is formed employing
Externí odkaz:
https://doaj.org/article/be2c5f04eb7f4538a5ef1d00ad679d24
Autor:
Manuel Matuz-Cruz, Antonio Luna-Alvarez, Eduardo Ramos-Diaz, Jean Marie Vianney Kinani, Dante Mújica-Vargas
Publikováno v:
CCE
This paper proposes an approach based on the use of time dimension within a Convolutional and Recurrent Hybrid Neural Network to carry out the driving of a simulated vehicle in real time. Convolutional layers are transformed into time-distributed lay
Autor:
Eduardo Ramos Diaz, Dante Mújica-Vargas, Francisco J. Gallegos Funes, Alberto Jorge Rosales Silva, Jean Marie Vianney Kinani
Publikováno v:
Journal of medical systems. 45(4)
In this study we propose a novel correction scheme that filters Magnetic Resonance Images data, by using a modified Linear Minimum Mean Square Error (LMMSE) estimator which takes into account the joint information of the local features. A closed-form
Publikováno v:
Communications in Computer and Information Science ISBN: 9783030625535
A pair of fully automatic brain tissue and tumor segmentation frameworks are introduced in current paper, these consist of a parallel and cascade architectures of a specialized convolutional deep neural network designed to develop binary segmentation
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::d28cfcee6c74872d447d9f60ffac14e2
https://doi.org/10.1007/978-3-030-62554-2_1
https://doi.org/10.1007/978-3-030-62554-2_1
Autor:
Eduardo Ramos-Diaz, Virna V. Vela-Rincón, Jean Marie Vianney Kinani, Dante Mújica-Vargas, Celia Ramos-Palencia
Publikováno v:
Advances in Computational Intelligence ISBN: 9783030608866
MICAI (2)
MICAI (2)
Fuzzy C-means (FCM) is one of the most used clustering algorithms, some research seeks to achieve a better quality in the results. It is well known that an adequate selection of the initial centroids will achieve a better clustering result. In this p
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::11d5c43a9f9eaa935dedb098eba8ac9e
https://doi.org/10.1007/978-3-030-60887-3_31
https://doi.org/10.1007/978-3-030-60887-3_31
Autor:
Francisco J. Gallegos-Funes, Alberto J. Rosales-Silva, Fernando Gamino-Sánchez, Isabel V. Hernández-Gutiérrez, Eduardo Ramos-Diaz, Dante Mújica-Vargas, Jean Marie Vianney Kinani, Blanca E. Carvajal-Gámez
Publikováno v:
Engineering Applications of Artificial Intelligence. 73:31-49
In this paper, we present the Block-Matching Fuzzy C-Means (BMFCM) clustering algorithm to segment RGB color images degraded with Additive White Gaussian Noise (AWGN). The contribution of this paper is threefold, namely, noise level estimation, denoi
Publikováno v:
Signal, Image and Video Processing. 12:231-238
A novel framework for sparse and dense disparity estimation was designed, and the proposed framework has been implemented in CPU and GPU for a parallel processing capability. The Census transform is applied in the first stage, and then, the Hamming d
Autor:
Leon Tabaro, Jean Marie Vianney Kinani, Alberto Jorge Rosales-Silva, Julio César Salgado-Ramírez, Dante Mújica-Vargas, Ponciano Jorge Escamilla-Ambrosio, Eduardo Ramos-Díaz
Publikováno v:
Information, Vol 15, Iss 8, p 473 (2024)
In this work, we explore the application of deep reinforcement learning (DRL) to algorithmic trading. While algorithmic trading is focused on using computer algorithms to automate a predefined trading strategy, in this work, we train a Double Deep Q-
Externí odkaz:
https://doaj.org/article/3547b98b3acc4e129149b0d00547a585