Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Eduardo Muñoz-Hernández"'
Publikováno v:
Calculus of Variations and Partial Differential Equations. 62
We provide a Maupertuis-type principle for the following system of ODE, of interest in special relativity: $$ \frac{\rm d}{{\rm d}t}\left(\frac{m\dot{x}}{\sqrt{1-|\dot{x}|^2/c^2}}\right)=\nabla V(x),\qquad x\in\Omega \subset \mathbb{R}^n, $$ where $m
Publikováno v:
Discrete & Continuous Dynamical Systems - A. 40:2393-2419
This paper studies the existence of subharmonics of arbitrary order in a generalized class of non-autonomous predator-prey systems of Volterra type with periodic coefficients. When the model is non-degenerate it is shown that the Poincare–Birkhoff
Publikováno v:
E-Prints Complutense. Archivo Institucional de la UCM
instname
instname
In this paper, we investigate the problem of the existence and multiplicity of periodic solutions to the planar Hamiltonian system x ′ = - λ α ( t ) f ( y ) x^{\prime}=-\lambda\alpha(t)f(y) , y ′ = λ β ( t ) g
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::28d25a3202a7395d5c992aec8f3a4629
https://eprints.ucm.es/id/eprint/74336/
https://eprints.ucm.es/id/eprint/74336/
Publikováno v:
Nonlinearity. 33:34-71
This paper ascertains the global topological structure of the set of subharmonics of arbitrary order of the periodic predator-prey model introduced in Lopez-Gomez et al (1996 Adv. Differ. Equ. 1 403–23). By constructing the iterates of the monodrom
Publikováno v:
E-Prints Complutense. Archivo Institucional de la UCM
instname
instname
This paper introduces a spatially heterogeneous diffusive predator–prey model unifying the classical Lotka–Volterra and Holling–Tanner ones through a prey saturation coefficient, \begin{document}$ m(x) $\end{document} , which is spatially heter
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::76424984785b8fece33da115abf340aa
Publikováno v:
Nonlinearity; Jan2020, Vol. 33 Issue 1, p1-1, 1p