Zobrazeno 1 - 10
of 17
pro vyhledávání: '"Eduardo Martínez-Pedroza"'
Autor:
Shivam Arora, Eduardo Martínez-Pedroza
Publikováno v:
Journal of Algebra.
The main objects of study in this article are pairs $(G, \mathcal{H})$ where $G$ is a topological group with a compact open subgroup, and $\mathcal{H}$ is a finite collection of open subgroups. We develop geometric techniques to study the notions of
Publikováno v:
Communications in Algebra. 50:1459-1468
Let $G$ be a group and $H$ a subgroup of $G$. This note introduces an equivalent definition of hyperbolic embedded subgroup based on Bowditch's approach to relatively hyperbolic groups in terms of fine graphs.
Version 4. Version accepted for pub
Version 4. Version accepted for pub
Autor:
Eduardo Martínez-Pedroza
Publikováno v:
Séminaire de théorie spectrale et géométrie. 33:55-60
The firefighter game problem on locally finite connected graphs was introduced by Bert Hartnell. The game on a graph $G$ can be described as follows: let $f_n$ be a sequence of positive integers; an initial fire starts at a finite set of vertices; at
Autor:
Eduardo Martínez-Pedroza
Publikováno v:
Journal of Group Theory. 20:1031-1060
A remarkable result of Gersten states that the class of hyperbolic groups of cohomological dimension $2$ is closed under taking finitely presented (or more generally $FP_2$) subgroups. We prove the analogous result for relatively hyperbolic groups of
Publikováno v:
Journal of the Institute of Mathematics of Jussieu. 18:329-345
Let $G$ be a group hyperbolic relative to a finite collection of subgroups $\mathcal P$. Let $\mathcal F$ be the family of subgroups consisting of all the conjugates of subgroups in $\mathcal P$, all their subgroups, and all finite subgroups. Then th
Let $G$ be a group and $\mathcal{F}$ be a family of subgroups closed under conjugation and subgroups. A model for the classifying space $E_{\mathcal{F}} G$ is a $G$-CW-complex $X$ such that every isotropy group belongs to $\mathcal{F}$, and for all $
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8715d4cb0838876eaae8246feb7be9a2
http://arxiv.org/abs/1908.05543
http://arxiv.org/abs/1908.05543
Publikováno v:
Geometriae Dedicata
Given a non-decreasing function $f \colon \mathbb{N} \to \mathbb{N}$ we define a single player game on (infinite) connected graphs that we call fire retaining. If a graph $G$ admits a winning strategy for any initial configuration (initial fire) then
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6daa80ec354922f7fdc7004390508a48
http://arxiv.org/abs/1904.04658
http://arxiv.org/abs/1904.04658
Autor:
Eduardo Martínez-Pedroza, Shivam Arora
A result of Gersten states that if $G$ is a hyperbolic group with integral cohomological dimension $\mathsf{cd}_{\mathbb{Z}}(G)=2$ then every finitely presented subgroup is hyperbolic. We generalize this result for the rational case $\mathsf{cd}_{\ma
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c8255c8b17a3d300a447a96e8fd515dd
http://arxiv.org/abs/1811.09220
http://arxiv.org/abs/1811.09220
Publikováno v:
Involve 11, no. 4 (2018), 569-583
Let $G$ be a group. For any $\mathbb{Z} G$--module $M$ and any integer $d>0$, we define a function $FV_{M}^{d+1}\colon \mathbb{N} \to \mathbb{N} \cup \{\infty\}$ generalizing the notion of $(d+1)$--dimensional filling function of a group. We prove th
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a0eda3b2a8ce97871796088b1194ad51
https://projecteuclid.org/euclid.involve/1522202416
https://projecteuclid.org/euclid.involve/1522202416
Autor:
Eduardo Martínez-Pedroza
In the framework of homological characterizations of relative hyperbolicity, Groves and Manning posed the question of whether a simply connected $2$-complex $X$ with a linear homological isoperimetric inequality, a bound on the length of attaching ma
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6fe502e0e881ba22b8aa19f8b3ca7d3a
http://arxiv.org/abs/1501.01259
http://arxiv.org/abs/1501.01259