Zobrazeno 1 - 10
of 115
pro vyhledávání: '"Edmunds, David E"'
Publikováno v:
J. Approx. Theory 269 (2021), 105608
We compute the precise value of the measure of noncompactness of Sobolev embeddings $W_0^{1,p}(D)\hookrightarrow L^p(D)$, $p\in(1,\infty)$, on strip-like domains $D$ of the form $\mathbb{R}^k\times\prod\limits_{i=1}^{n-k}(a_i,b_i)$. We show that such
Externí odkaz:
http://arxiv.org/abs/2006.07948
Publikováno v:
J. Funct. Anal., 278(4):108341, 2020
We study the behaviour on rearrangement-invariant spaces of such classical operators of interest in harmonic analysis as the Hardy-Littlewood maximal operator (including the fractional version), the Hilbert and Stieltjes transforms, and the Riesz pot
Externí odkaz:
http://arxiv.org/abs/1903.03808
Autor:
Edmunds, David E, Melkonian, Houry
An integral inequality due to Ball involves the $L_{q}$ norm of the $\sinc_p$ function; the dependence of this norm on $q$ as $q\rightarrow\infty$ is now understood. By use of recent inequalities involving $p-$trigonometric functions $(1
Externí odkaz:
http://arxiv.org/abs/1804.03490
Publikováno v:
In Journal of Approximation Theory September 2021 269
Autor:
Edmunds, David E., Lang, Jan
Sharp upper and lower estimates are obtained of the approximation numbers of a Sobolev embedding and an integral operator of Volterra type. These lead to asymptotic formulae for the approximation numbers and certain other s-numbers.
Comment: 10
Comment: 10
Externí odkaz:
http://arxiv.org/abs/1504.02515
Publikováno v:
In Journal of Functional Analysis 1 March 2020 278(4)
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Edmunds, David E.1 (AUTHOR), Lang, Jan2 (AUTHOR) lang@math.osu.edu
Publikováno v:
Mathematische Nachrichten. Mar2023, Vol. 296 Issue 3, p1071-1086. 16p.
Autor:
Edmunds, David E, Netrusov, Yuri
The entropy numbers of certain finite-dimensional operators acting between vector-valued sequence spaces are estimated, thus providing a generalization of the famous result of Schutt. In addition, two-sided estimates of the entropy numbers of some di
Externí odkaz:
http://arxiv.org/abs/1309.7885