Zobrazeno 1 - 10
of 567
pro vyhledávání: '"Edmunds, David"'
Autor:
Inman, Richard D., Robb, Benjamin S., O’Donnell, Michael S., Edmunds, David R., Holloran, Matthew J., Aldridge, Cameron L.
Publikováno v:
In Ecological Indicators September 2024 166
Publikováno v:
J. Approx. Theory 269 (2021), 105608
We compute the precise value of the measure of noncompactness of Sobolev embeddings $W_0^{1,p}(D)\hookrightarrow L^p(D)$, $p\in(1,\infty)$, on strip-like domains $D$ of the form $\mathbb{R}^k\times\prod\limits_{i=1}^{n-k}(a_i,b_i)$. We show that such
Externí odkaz:
http://arxiv.org/abs/2006.07948
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
J. Funct. Anal., 278(4):108341, 2020
We study the behaviour on rearrangement-invariant spaces of such classical operators of interest in harmonic analysis as the Hardy-Littlewood maximal operator (including the fractional version), the Hilbert and Stieltjes transforms, and the Riesz pot
Externí odkaz:
http://arxiv.org/abs/1903.03808
Autor:
Prochazka, Brian G., Coates, Peter S., O'Donnell, Michael S., Edmunds, David R., Monroe, Adrian P., Ricca, Mark A., Wann, Gregory T., Hanser, Steve E., Wiechman, Lief A., Doherty, Kevin E., Chenaille, Michael P., Aldridge, Cameron L.
Publikováno v:
In Ecological Indicators April 2023 148
Autor:
Wann, Gregory T., Van Schmidt, Nathan D., Shyvers, Jessica E., Tarbox, Bryan C., McLachlan, Megan M., O’Donnell, Michael S., Titolo, Anthony J., Coates, Peter S., Edmunds, David R., Heinrichs, Julie A., Monroe, Adrian P., Aldridge, Cameron L.
Publikováno v:
In Global Ecology and Conservation January 2023 41
Autor:
Edmunds, David E, Melkonian, Houry
An integral inequality due to Ball involves the $L_{q}$ norm of the $\sinc_p$ function; the dependence of this norm on $q$ as $q\rightarrow\infty$ is now understood. By use of recent inequalities involving $p-$trigonometric functions $(1
Externí odkaz:
http://arxiv.org/abs/1804.03490
The paper introduces a variable exponent space $X$ which has in common with $L^{\infty}([0,1])$ the property that the space $C([0,1])$ of continuous functions on $[0,1]$ is a closed linear subspace in it. The associate space of $X$ contains both the
Externí odkaz:
http://arxiv.org/abs/1710.03990