Zobrazeno 1 - 10
of 1 313
pro vyhledávání: '"Edelman, M"'
Autor:
Zaslavsky, G. M., Edelman, M.
We consider transport properties of the chaotic (strange) attractor along unfolded trajectories of the dissipative standard map. It is shown that the diffusion process is normal except of the cases when a control parameter is close to some special va
Externí odkaz:
http://arxiv.org/abs/0805.1952
We consider a chain of nonlinear oscillators with long-range interaction of the type 1/l^{1+alpha}, where l is a distance between oscillators and 0< alpha <2. In the continues limit the system's dynamics is described by the Ginzburg-Landau equation w
Externí odkaz:
http://arxiv.org/abs/0707.3941
Autor:
Zaslavsky, G. M., Edelman, M.
We consider a perturbation of the Anosov-type system, which leads to the appearance of a hierarchical set of islands-around-islands. We demonstrate by simulation that the boundaries of the islands are sticky to trajectories. This phenomenon leads to
Externí odkaz:
http://arxiv.org/abs/nlin/0511027
Multiscale phenomena are ubiquitous in nature as well in laboratories. A broad range of interacting space and time scales determines the dynamics of many systems which are inherently multiscale. In most research disciplines multiscale phenomena are n
Externí odkaz:
http://arxiv.org/abs/physics/0511096
We consider a nonlinear oscillator with fractional derivative of the order alpha. Perturbed by a periodic force, the system exhibits chaotic motion called fractional chaotic attractor (FCA). The FCA is compared to the ``regular'' chaotic attractor. T
Externí odkaz:
http://arxiv.org/abs/nlin/0508018
Publikováno v:
S.V. Prants, M. Edelmam and G.M. Zaslavsky. Chaos and flights in the atom-photon interaction in cavity QED. Physical Review E. V. 66 (2002) art. no 046222-(1-12)
We study dynamics of the atom-photon interaction in cavity quantum electrodynamics (QED), considering a cold two-level atom in a single-mode high-finesse standing-wave cavity as a nonlinear Hamiltonian system with three coupled degrees of freedom: tr
Externí odkaz:
http://arxiv.org/abs/nlin/0210036
Autor:
Zaslavsky, G. M., Edelman, M.
A family of the billiard-type systems with zero Lyapunov exponent is considered as an example of dynamics which is between the regular one and chaotic mixing. This type of dynamics is called ``pseudochaos''. We demonstrate how the fractional kinetic
Externí odkaz:
http://arxiv.org/abs/nlin/0112033
Autor:
Edelman, M.
Publikováno v:
In Communications in Nonlinear Science and Numerical Simulation 2011 16(12):4573-4580
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.