Zobrazeno 1 - 10
of 20
pro vyhledávání: '"Eddye Bustamante"'
Autor:
Eddye Bustamante, José Jiménez Urrea
Publikováno v:
Revista Integración, Vol 39, Iss 1 (2021)
In this work we consider equations of the form ∂tu + P(D)u + u^{t}∂xu = 0, where P(D) is a two-dimensional differential operator, and l ∈ N. We prove that if u is a sufficiently smooth solution of the equation, such that supp u(0), supp u
Externí odkaz:
https://doaj.org/article/98a90760726c408785a5ef05c6bb1b94
Autor:
Eddye Bustamante, José Jiménez Urrea
Publikováno v:
Mathematische Nachrichten. 295:2357-2372
Publikováno v:
Electronic Journal of Differential Equations, Vol 2015, Iss 141,, Pp 1-24 (2015)
In this work we study the initial-value problem for the fifth-order Korteweg-de Vries equation $$ \partial_{t}u+\partial_{x}^{5}u+u^k\partial_{x}u=0, \quad x,t\in \mathbb{R}, \; k=1,2, $$ in weighted Sobolev spaces $H^s(\mathbb{R})\cap L^2(\lang
Externí odkaz:
https://doaj.org/article/2e3811ac7d124ca9933ab6904c10afb3
Publikováno v:
Nonlinear Analysis. 188:50-69
In this work we prove that the initial value problem (IVP) associated to the two-dimensional Benjamin–Ono equation u t + H Δ u + u u x = 0 , ( x , y ) ∈ T 2 , t ∈ R , u ( x , y , 0 ) = u 0 ( x , y ) , where H denotes the Hilbert transform with
Autor:
Eddye Bustamante, José Jiménez Urrea
Publikováno v:
Revista Integración. 39
In this work we consider equations of the form ∂tu + P(D)u + u^{l}∂xu = 0, where P(D) is a two-dimensional differential operator, and l ∈ N. We prove that if u is a sufficiently smooth solution of the equation, such that suppu(0), suppu(T) ⊂
Publikováno v:
Journal of Mathematical Analysis and Applications. 460:1004-1018
In this work we consider the initial value problem (IVP) associated to the Ostrovsky equations $$\left. \begin{array}{rl} u_t+\partial_x^3 u\pm \partial_x^{-1}u +u \partial_x u &\hspace{-2mm}=0,\qquad\qquad x\in\mathbb R,\; t\in\mathbb R,\\ u(x,0)&\h
Publikováno v:
Journal of Mathematical Analysis and Applications. 433:149-175
In this work we consider the initial value problem (IVP) associated to the two dimensional Zakharov–Kuznetsov equation u t + ∂ x 3 u + ∂ x ∂ y 2 u + u ∂ x u = 0 , ( x , y ) ∈ R 2 , t ∈ R , u ( x , y , 0 ) = u 0 ( x , y ) . } We study th
In this work we prove that the initial value problem (IVP) associated to the fractional two-dimensional Benjamin-Ono equation \begin{document}$\left. \begin{array}{rl} u_t+D_x^{\alpha} u_x +\mathcal Hu_{yy} +uu_x &\hspace{-2mm} = 0, \qquad\qquad (x,
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e1183c3b6cba49640c545707ebcb4ee8
http://arxiv.org/abs/1710.08380
http://arxiv.org/abs/1710.08380
Publikováno v:
Journal of Functional Analysis. 264:2529-2549
We prove that if the difference of two sufficiently smooth solutions of the Zakharov–Kuznetsov equation ∂ t u + ∂ x 3 u + ∂ x ∂ y 2 u + u ∂ x u = 0 , ( x , y ) ∈ R 2 , t ∈ [ 0 , 1 ] , decays as e − a ( x 2 + y 2 ) 3 / 4 at two diffe
We prove that if the difference of two sufficiently smooth solutions of the three-dimensional Zakharov–Kuznetsovequation ∂ t u + ∂ x △ u + u ∂ x u = 0 , ( x , y , z ) ∈ R 3 , t ∈ [ 0 , 1 ] , decays as e − a ( x 2 + y 2 + z 2 ) 3 ∕ 4
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::622004501db3aec75bb30f2fa6eb0f7a