Zobrazeno 1 - 10
of 18
pro vyhledávání: '"Eda Cesaratto"'
Publikováno v:
Discrete Mathematics & Theoretical Computer Science, Vol DMTCS Proceedings vol. AG,..., Iss Proceedings (2006)
We solve a problem by V. I. Arnold dealing with "how random" modular arithmetic progressions can be. After making precise how Arnold proposes to measure the randomness of a modular sequence, we show that this measure of randomness takes a simplified
Externí odkaz:
https://doaj.org/article/c7ec922ef7e54b22917d960138e9e64e
Autor:
Verónica Becher, Eda Cesaratto
We show that, in an alphabet of $n$ symbols, the number of words of length $n$ whose number of different symbols is away from $(1-1/e)n$, which is the value expected by the Poisson distribution, has exponential decay in $n$. We use Laplace's method f
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5a43422d6565acc6e1642e186e431516
http://arxiv.org/abs/2105.12813
http://arxiv.org/abs/2105.12813
Autor:
Antonio Cafure, Eda Cesaratto
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783030850876
Cyclotomic polynomials are basic objects in Number Theory. Their properties depend on the number of distinct primes that intervene in the factorization of their order, and the binary case is thus the first nontrivial case. This paper sees the vector
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::2bae1b16f6e9e231b38809d37e663ae0
https://doi.org/10.1007/978-3-030-85088-3_6
https://doi.org/10.1007/978-3-030-85088-3_6
Publikováno v:
CONICET Digital (CONICET)
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
We obtain estimates on the number $|\mathcal{A}_{\boldsymbol{\lambda}}|$ of elements on a linear family $\mathcal{A}$ of monic polynomials of $\mathbb{F}_q[T]$ of degree $n$ having factorization pattern $\boldsymbol{\lambda}:=1^{\lambda_1}2^{\lambda_
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::59f80f4cd9e5b409e679c6a54f9ac743
https://link.springer.com/article/10.1007/s00493-015-3330-5
https://link.springer.com/article/10.1007/s00493-015-3330-5
Autor:
Eda Cesaratto, Brigitte Vallée
We study the probabilistic behaviour of the continued fraction expansion of a quadratic irrational number, when weighted by some "additive" cost. We prove asymptotic Gaussian limit laws, with an optimal speed of convergence. We deal with the underlyi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::560394231aef42dad4d10d75dd6198e3
Autor:
Antonio Cafure, Eda Cesaratto
We present criteria for determining irreducibility of reciprocal polynomials over the field of rational numbers. We also obtain some combinatorial results concerning the irreducibility of reciprocal polynomials. As a consequence of our approach, we a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::cb1560ad7f42ab9a25bb3c27447e0c6f
https://www.tandfonline.com/doi/abs/10.4169/amer.math.monthly.124.1.37
https://www.tandfonline.com/doi/abs/10.4169/amer.math.monthly.124.1.37
Publikováno v:
Journal of Number Theory. 133:1409-1434
"Most" hypersurfaces in projective space are irreducible, and rather precise estimates are known for the probability that a random hypersurface over a finite field is reducible. This paper considers the parametrization of space curves by the appropri
Autor:
Eda Cesaratto, Brigitte Vallée
Publikováno v:
Combinatorics, Words and Symbolic Dynamics
Edited by V. Berthé and M. Rigo. Combinatorics, Words and Symbolic Dynamics, Cambridge University Press, pp.401-442, 2016, 9781139924733. ⟨10.1017/CBO9781139924733.012⟩
Edited by V. Berthé and M. Rigo. Combinatorics, Words and Symbolic Dynamics, Cambridge University Press, pp.401-442, 2016, 9781139924733. ⟨10.1017/CBO9781139924733.012⟩
Introduction A measure of randomness on the unit interval ℐ := [0,1] tests how a sequence X ⊂ ℐ differs from a ‘truly random’ sequence. See books (Drmota and Tichy, 1997; Kuipers and Niederreiter, 1974) for a general discussion on the subje
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3c176884b4a069e7638d2cb7c6eb9e99
https://hal.archives-ouvertes.fr/hal-01578308
https://hal.archives-ouvertes.fr/hal-01578308
Autor:
Eda Cesaratto, Brigitte Vallée
Publikováno v:
Ramanujan Journal (The)
Ramanujan Journal (The), 2011, 24, pp.183-218. ⟨10.1007/s11139-010-9256-z⟩
Ramanujan Journal (The), 2011, 24, pp.183-218. ⟨10.1007/s11139-010-9256-z⟩
Numbers whose continued fraction expansion contains only small digits have been extensively studied. In the real case, the Hausdorff dimension σ M of the reals with digits in their continued fraction expansion bounded by M was considered, and estima
Autor:
Eda Cesaratto, Brigitte Vallée
Publikováno v:
Combinatorics, Probability and Computing
Combinatorics, Probability and Computing, Cambridge University Press (CUP), 2015, 24 (01), pp.54-103. ⟨10.1017/S0963548314000741⟩
Combinatorics, Probability and Computing, Cambridge University Press (CUP), 2015, 24 (01), pp.54-103. ⟨10.1017/S0963548314000741⟩
The depth of a trie has been deeply studied when the source which produces the words is a simple source (a memoryless source or a Markov chain). When a source is simple but not an unbiased memoryless source, the expectation and the variance are both
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a6203e64c32eda14749fa350d30b620b
https://www.cambridge.org/core/journals/combinatorics-probability-and-computing/article/div-classtitlegaussian-distribution-of-trie-depth-for-strongly-tame-sourcesdiv/83E2FECEDBCF32D707D0EFCE926D20B6
https://www.cambridge.org/core/journals/combinatorics-probability-and-computing/article/div-classtitlegaussian-distribution-of-trie-depth-for-strongly-tame-sourcesdiv/83E2FECEDBCF32D707D0EFCE926D20B6