Zobrazeno 1 - 10
of 56
pro vyhledávání: '"Eckart-Young"'
Publikováno v:
CQD Revista Eletrônica Paulista de Matemática, Vol 22, Iss 1 (2022)
Este trabalho tem por objetivo apresentar a Decomposição em Valores Singulares e desenvolver uma aplicação computacional para compressão e reconstrução de imagens digitais, as quais podem ser armazenadas e transmitidas utilizando-se menos info
Externí odkaz:
https://doaj.org/article/16861ad537294d39bf79cd05d20ee5ae
Publikováno v:
Transactions of the American Mathematical Society, 2003 Feb 01. 355(2), 493-517.
Externí odkaz:
https://www.jstor.org/stable/1194788
Autor:
Y. N. Artamonov
Publikováno v:
Известия Иркутского государственного университета: Серия "Математика", Vol 18, Iss 1, Pp 3-20 (2016)
The article describes the approach to the construction of methods of the group choice and ranking of objects in order of preference, based on the minimizing the deviation of the matrix, characterizing objects (of an evaluation matrix) from some peer
Externí odkaz:
https://doaj.org/article/0bc373c91ab94136a63d5ae6ce528524
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
González Castaño, Pablo
El Trabajo Fin de Grado que presentamos tiene por objetivo obtener aproximaciones de rango bajo a una matriz dada haciendo uso de su descomposición en valores singulares, o de una versión aleatorizada de dicha descomposición que requiere un coste
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______1514::60143e02ea932064157d09679afae3f1
Autor:
Davies, P. T.
Publikováno v:
Journal of the Royal Statistical Society. Series C (Applied Statistics), 1982 Jan 01. 31(3), 244-255.
Externí odkaz:
https://www.jstor.org/stable/2347998
Autor:
Ramsay, J. O.
Publikováno v:
Statistical Science, 1988 Nov 01. 3(4), 425-441.
Externí odkaz:
https://www.jstor.org/stable/2245395
Publikováno v:
Draisma, Jan; Ottaviani, Giorgio; Tocino, Alicia (2018). Best rank-k approximations for tensors: generalizing Eckart-Young. Research in mathematical sciences, 5(2) Springer 10.1007/s40687-018-0145-1
Research in the Mathematical Sciences, 5(2):27. Springer
Research in the Mathematical Sciences, 5(2):27. Springer
Given a tensor f in a Euclidean tensor space, we are interested in the critical points of the distance function from f to the set of tensors of rank at most k, which we call the critical rank-at-most-k tensors for f. When f is a matrix, the critical
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c1076e8c58a450142418beab0c12573b
Autor:
Alicia Tocino, Giorgio Ottaviani
In the tensor space $\mathrm{Sym}^d {\mathbb R}^2$ of binary forms we study the best rank $k$ approximation problem. The critical points of the best rank $1$ approximation problem are the eigenvectors and it is known that they span a hyperplane. We p
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5a1142f7a1c830ea692cc6216b193704
http://arxiv.org/abs/1707.04696
http://arxiv.org/abs/1707.04696