Zobrazeno 1 - 10
of 18
pro vyhledávání: '"Ebrahim Vatandoost"'
Publikováno v:
Transactions on Combinatorics, Vol 11, Iss 4, Pp 309-316 (2022)
Let $G=(V, E)$ be a simple graph. A set $C$ of vertices $G$ is an identifying code of $G$ if for every two vertices $x$ and $y$ the sets $N_{G} [x] \cap C$ and $N_{G} [y] \cap C$ are non-empty and different. Given a graph $G,$ the smallest size of an
Externí odkaz:
https://doaj.org/article/1e3aaa03b53b47e987392b8bc56e6728
Autor:
Athena Shaminezhad, Ebrahim Vatandoost
Publikováno v:
Opuscula Mathematica, Vol 40, Iss 5, Pp 617-627 (2020)
Let \(G\) be a graph and \(f:V (G)\rightarrow P(\{1,2\})\) be a function where for every vertex \(v\in V(G)\), with \(f(v)=\emptyset\) we have \(\bigcup_{u\in N_{G}(v)} f(u)=\{1,2\}\). Then \(f\) is a \(2\)-rainbow dominating function or a \(2RDF\) o
Externí odkaz:
https://doaj.org/article/3e7f9579bc6848e8a3200fda4f65c4a2
Publikováno v:
Transactions on Combinatorics, Vol 8, Iss 1, Pp 41-50 (2019)
In this article we study the Zero forcing number of Generalized Sierpi\'{n}ski graphs $S(G,t)$. More precisely, we obtain a general lower bound on the Zero forcing number of $S(G,t)$ and we show that this bound is tight. In particul
Externí odkaz:
https://doaj.org/article/5e51ed3ba1894518914f4aa2bed7a633
Autor:
Ebrahim Vatandoost, Masoumeh Khalili
Publikováno v:
Electronic Journal of Graph Theory and Applications, Vol 6, Iss 2, Pp 228-237 (2018)
Let G be a non-abelian group. The non-commuting graph of group G, shown by ΓG, is a graph with the vertex set G \ Z(G), where Z(G) is the center of group G. Also two distinct vertices of a and b are adjacent whenever ab ≠ ba. A set S ⊆ V(Γ) of
Externí odkaz:
https://doaj.org/article/27695a90913e45e1bcad26ac795bf8ff
Autor:
Ebrahim Vatandoost, Fatemeh Ramezani
Publikováno v:
Electronic Journal of Graph Theory and Applications, Vol 4, Iss 2, Pp 148-156 (2016)
Let $R$ be a commutative ring (with 1) and let $Z(R)$ be its set of zero-divisors. The zero-divisor graph $\Gamma(R)$ has vertex set $Z^*(R)=Z(R) \setminus \lbrace0 \rbrace$ and for distinct $x,y \in Z^*(R)$, the vertices $x$ and $y$ are adjacent if
Externí odkaz:
https://doaj.org/article/1289a9a407d54a268b62115eedec6040
Publikováno v:
Cogent Mathematics & Statistics, Vol 7, Iss 1 (2020)
Let $$G = (V(G),E(G))$$ be a graph and $$f:V(G) \to \{ 0,1,2\} $$ be a function where for every vertex $$v \in V(G)$$ with $$f(v) = 0,$$ there is a vertex $$u \in {N_G}(v),$$ where $$f(u) = 2.$$ Then $$f$$ is a Roman dominating function or a $$RDF$$
Publikováno v:
Algebraic structures and their applications. 4:15-25
Let Γa be a graph whose each vertex is colored either white or black. If u is a black vertex of Γ such that exactly one neighbor v of u is white, then u changes the color of v to black. A zero forcing set for a Γ graph i
A signed dominating function of graph $\Gamma$ is a function $g :V(\Gamma) \longrightarrow \{-1,1\}$ such that $\sum_{u \in N[v]}g(u) >0$ for each $v \in V(\Gamma)$. The signed domination number $\gamma_{_S}(\Gamma)$ is the minimum weight of a signed
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::dad0d4e77462aea91acd66464396f07d
http://arxiv.org/abs/1910.04051
http://arxiv.org/abs/1910.04051
Autor:
Fatemeh Ramezani, Ebrahim Vatandoost
Publikováno v:
Electronic Journal of Graph Theory and Applications, Vol 4, Iss 2, Pp 148-156 (2016)
Let $R$ be a commutative ring (with 1) and let $Z(R)$ be its set of zero-divisors. The zero-divisor graph $\Gamma(R)$ has vertex set $Z^*(R)=Z(R) \setminus \lbrace0 \rbrace$ and for distinct $x,y \in Z^*(R)$, the vertices $x$ and $y$ are adjacent if
Publikováno v:
Iranian Journal of Science and Technology, Transactions A: Science. 41:383-391
For each non-commutative ring R, the commuting graph of R is a graph with vertex set $R\setminus Z(R)$ and two vertices $x$ and $y$ are adjacent if and only if $x\neq y$ and $xy=yx$. In this paper, we consider the domination and signed domination num