Zobrazeno 1 - 10
of 13
pro vyhledávání: '"Ebner Pineda"'
Publikováno v:
AIMS Mathematics, Vol 8, Iss 11, Pp 27128-27150 (2023)
In this paper, we introduce variable Gaussian Besov-Lipschitz $ B_{p(\cdot), q(\cdot)}^{\alpha}(\gamma_{d}) $ and Triebel-Lizorkin spaces $ F_{p(\cdot), q(\cdot)}^{\alpha}(\gamma_{d}), $ i.e., Gaussian Besov-Lipschitz and Triebel-Lizorkin spaces with
Externí odkaz:
https://doaj.org/article/6cd010aa8cf6440e841d8f62ebe681e5
Publikováno v:
International Journal of Mathematics and Mathematical Sciences, Vol 2023 (2023)
Given an matrix A, considered as a linear map A:ℝn⟶ℝn, then A induces a topological space structure on ℝn which differs quite a lot from the usual one (induced by the Euclidean metric). This new topological structure on ℝn has very interest
Externí odkaz:
https://doaj.org/article/7cbcc73a21e54a73a625fb19d19509a5
Publikováno v:
Publicaciones en Ciencias y Tecnología, Vol 10, Iss 2, Pp 49-58 (2016)
In this paper we introduce the notion of “function of second bounded variation” in the sense of Shiba, and we show that if a superposition operator applies the space of all such functions on itself and it is uniformly bounded, then its generating
Externí odkaz:
https://doaj.org/article/5871c8289f804d58ad10cbdbd2424bce
Publikováno v:
Quaestiones Mathematicae. 45:385-407
In this paper we are going to prove that the Hardy-Litllewood maximal operators on variable Lebesgue spaces Lp(·)(µ) with respect to a probability Borel measure µ, are weak type and strong type for...
Publikováno v:
Advances in Pure Mathematics. 10:245-258
In this paper, we study the structure of the space of functions of bounded second variation in the sense of Shiba; an integral representation theorem is also proved and necessary conditions are given for that the space be closed under composition of
Publikováno v:
Revista Colombiana de Matemáticas, Volume: 55, Issue: 1, Pages: 21-41, Published: 04 NOV 2021
The main result of this paper is the proof of the boundedness of the Maximal Function T* of the Ornstein-Uhlenbeck semigroup {T t } t≥0 in ℝ d , on Gaussian variable Lebesgue spaces L p(·) (γ d ), under a condition of regularity on p(·) follow
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::51500abf1162e34fc2387c2d471f7311
http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0034-74262021000100021&lng=en&tlng=en
http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0034-74262021000100021&lng=en&tlng=en
Publikováno v:
Journal of Stochastic Analysis. 1
Publikováno v:
Journal of Mathematical Analysis and Applications. 422:798-818
In a previous paper the boundedness properties of Riesz Potentials, Bessel potentials and Fractional Derivatives were studied in detail on Gaussian Besov-Lipschitz spaces $B_{p,q}^{\alpha}(\gamma_d)$. In this paper we will continue our study proving
Autor:
Wilfredo Urbina, Ebner Pineda
Publikováno v:
Journal of Approximation Theory. 161(2):529-564
In this paper we define Besov–Lipschitz and Triebel–Lizorkin spaces in the context of Gaussian harmonic analysis, the harmonic analysis of Hermite polynomial expansions. We study inclusion relations among them, some interpolation results and cont