Zobrazeno 1 - 10
of 10
pro vyhledávání: '"Ebbens, Matthijs"'
Autor:
Ebbens, Matthijs, Lazarus, Francis
Given a weighted, undirected graph $G$ cellularly embedded on a topological surface $S$, we describe algorithms to compute the second shortest and third shortest closed walks of $G$ that are homotopically non-trivial in $S$. Our algorithms run in $O(
Externí odkaz:
http://arxiv.org/abs/2407.13479
Consider a weighted, undirected graph cellularly embedded on a topological surface. The function assigning to each free homotopy class of closed curves the length of a shortest cycle within this homotopy class is called the marked length spectrum. Th
Externí odkaz:
http://arxiv.org/abs/2303.08036
The Bolza surface can be seen as the quotient of the hyperbolic plane, represented by the Poincar\'e disk model, under the action of the group generated by the hyperbolic isometries identifying opposite sides of a regular octagon centered at the orig
Externí odkaz:
http://arxiv.org/abs/2103.05960
Motivated by recent work on Delaunay triangulations of hyperbolic surfaces, we consider the minimal number of vertices of such triangulations. First, we will show that every hyperbolic surface of genus $g$ has a simplicial Delaunay triangulation with
Externí odkaz:
http://arxiv.org/abs/2011.09847
Autor:
Ebbens, Matthijs1 ymebbens@gmail.com, Iordanov, Iordan2 i.m.iordanov@gmail.com, Teillaud, Monique2 Monique.Teillaud@inria.fr, Vegter, Gert1 g.vegter@rug.nl
Publikováno v:
Journal of Computational Geometry. 2022, Vol. 13 Issue 1, p125-177. 53p.
Publikováno v:
Discrete & Computational Geometry; Mar2023, Vol. 69 Issue 2, p568-592, 25p
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
37th International Symposium on Computational Geometry, SoCG 2021
Motivated by recent work on Delaunay triangulations of hyperbolic surfaces, we consider the minimal number of vertices of such triangulations. First, we will show that every hyperbolic surface of genus $g$ has a simplicial Delaunay triangulation with
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8eae13c0b5fe90c73e4a0569004ca38d
http://orbilu.uni.lu/handle/10993/53967
http://orbilu.uni.lu/handle/10993/53967
Publikováno v:
EuroCG 2019-35th European Workshop on Computational Geometry
EuroCG 2019-35th European Workshop on Computational Geometry, Mar 2019, Utrecht, Netherlands
EuroCG 2019-35th European Workshop on Computational Geometry, Mar 2019, Utrecht, Netherlands
International audience; Of the several existing algorithms for computing Delaunay triangulations of point sets in Euclidean space, the incremental algorithm has recently been extended to the Bolza surface, a hyperbolic surface of genus 2. We will gen
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::f8c06c1c4cd97e351654f3b98a204dcd
https://hal.inria.fr/hal-02940717
https://hal.inria.fr/hal-02940717
Publikováno v:
9th International Conference on Curves and Surfaces
9th International Conference on Curves and Surfaces, Jun 2018, Arcachon, France
9th International Conference on Curves and Surfaces, Jun 2018, Arcachon, France
International audience; The talk presents work on computing Delaunay triangulations of some symmetric hyperbolic surfaces of genus at least 2.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::336c6f2f68add4593f3b56b1a55252c3
https://hal.inria.fr/hal-01801136/document
https://hal.inria.fr/hal-01801136/document