Zobrazeno 1 - 10
of 15
pro vyhledávání: '"Eaman Eftekhary"'
Autor:
Eaman Eftekhary
Publikováno v:
ریاضی و جامعه, Vol 9, Iss 1, Pp 107-136 (2024)
In this paper, which is the first paper from a trio on important developments of low dimensional topology in the past 100 years, we review the history and major developments in knot theory. This historic account includes the initial attempts at formu
Externí odkaz:
https://doaj.org/article/e89184e9f9774d4183e6a9b69216ba4f
Autor:
Eaman Eftekhary, Narges Bagherifard
Publikováno v:
Studia Scientiarum Mathematicarum Hungarica. 58:408-431
Let $K$ denote a knot inside the homology sphere $Y$ and $K'$ denote a knot inside a homology sphere $L$-space. Let $X=Y(K,K')$ denote the 3-manifold obtained by splicing the complements of $K$ and $K'$. We show that $\text{rank}(\widehat{HF}(X)) \ge
Autor:
Eaman Eftekhary, Akram Alishahi
Publikováno v:
Geom. Topol. 24, no. 5 (2020), 2435-2469
Given a knot K in S^3, let u^-(K) (respectively, u^+(K)) denote the minimum number of negative (respectively, positive) crossing changes among all unknotting sequences for K. We use knot Floer homology to construct the invariants l^-(K), l^+(K) and l
Autor:
Eaman Eftekhary, Akram Alishahi
Publikováno v:
Journal of Topology
We introduce a generalization of oriented tangles, which are still called tangles, so that they are in one-to-one correspondence with the sutured manifolds. We define cobordisms between sutured manifolds (tangles) by generalizing cobordisms between o
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::18e704c02694995a3572c82362a4108c
https://hdl.handle.net/21.11116/0000-0007-A21B-421.11116/0000-0007-A21E-121.11116/0000-0009-2BCE-0
https://hdl.handle.net/21.11116/0000-0007-A21B-421.11116/0000-0007-A21E-121.11116/0000-0009-2BCE-0
Autor:
Iman Setayesh, Eaman Eftekhary
Publikováno v:
Advances in Mathematics. 298:89-121
Let κ e ( M ‾ g , n ) denote the kappa ring of M ‾ g , n in dimension e (equivalently, in degree d = 3 g − 3 + n − e ). For g , e ≥ 0 fixed, as the number n of the markings grows large we show that the rank of κ e ( M ‾ g , n ) is asymp
Autor:
Eaman Eftekhary
Publikováno v:
Michigan Mathematical Journal
In this short note, we compare the combinatorial sign assignment of Manolescu, Ozsvath, Szabo and Thurston for grid homology of knots and links in 3-sphere with the sign assignment coming from a coherent system of orientations on Whitney disks. Altho
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5934a5e33870612c232c552dd4fe904a
http://arxiv.org/abs/1812.02374
http://arxiv.org/abs/1812.02374
Autor:
Eaman Eftekhary, Akram Alishahi
Publikováno v:
Journal of Symplectic Geometry. 13:609-743
We introduce a refinement of the Ozsvath-Szabo complex associated to a balanced sutured manifold $(X,\tau)$ by Juhasz. An algebra $A_\tau$ is associated to the boundary of a sutured manifold and a filtration of its generators by $H^2(X,\partial X;\Z)
Autor:
Eaman Eftekhary
Publikováno v:
Algebr. Geom. Topol. 20, no. 6 (2020), 3205-3218
This note corrects the mistakes in the splicing formulas of the paper “Floer homology and splicing knot complements” (Algebr. Geom. Topol. 15 (2015) 3155–3213). The mistakes are the result of the incorrect assumption that for a knot [math] insi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2a71056d3211c91fa1b3edac7a492968
Autor:
Eaman Eftekhary
Let $Y$ be a homology sphere which contains an incompressible torus. We show that $Y$ cannot be an $L$-space, i.e. the rank of $\widehat{\text{HF}}(Y)$ is greater than $1$. In fact, if the homology sphere $Y$ is an irreducible $L$-space, then $Y$ is
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::10acef7fad383ea6285d355e20eb7345
Autor:
Iman Setayesh, Eaman Eftekhary
Publikováno v:
International Mathematics Research Notices. :rnw125
We obtain lower bounds on the rank of the kappa ring of the Delign-Mumford compactification of the moduli space of curves in different degrees. For this purpose, we introduce a quotient of the kappa ring, the combinatorial kappa ring, and show that t