Zobrazeno 1 - 10
of 25
pro vyhledávání: '"ESPINDOLA, CHRISTIAN"'
Autor:
Espíndola, Christian, Kanalas, Kristóf
We give a detailed and self-contained introduction to the theory of $\lambda $-toposes and prove the following: 1) A $\lambda $-separable $\lambda $-topos (one whose defining site has a certain smallness property) has enough $\lambda $-points. 2) Giv
Externí odkaz:
http://arxiv.org/abs/2312.12356
Autor:
Espindola, Christian
We provide a complete classification of all the possible categoricity spectra, in terms of internal size, that can appear in a large accessible category with directed colimits, assuming the Singular Cardinal Hypothesis ($SCH$), and providing as well
Externí odkaz:
http://arxiv.org/abs/2301.13167
Autor:
Espíndola, Christian
Publikováno v:
In Annals of Pure and Applied Logic January 2025 176(1)
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
A short proof of Shelah's eventual categoricity conjecture for AEC's with interpolation, under $GCH$
Autor:
Espíndola, Christian
We provide a short proof of Shelah's eventual categoricity conjecture, assuming the Generalized Continuum Hypothesis ($GCH$), for abstract elementary classes (AEC's) with interpolation, a strengthening of amalgamation which is a necessary and suffici
Externí odkaz:
http://arxiv.org/abs/1909.13713
Autor:
Espíndola, Christian
We prove preservation theorems for $\mathcal{L}_{\omega_1, G}$, the countable fragment of Vaught's closed game logic. These are direct generalizations of the theorems of \L{}o\'s-Tarski (resp. Lyndon) on sentences of $\mathcal{L}_{\omega_1, \omega}$
Externí odkaz:
http://arxiv.org/abs/1906.09173
Autor:
Espíndola, Christian
We provide a proof, in $ZFC$, of Shelah's eventual categoricity conjecture for abstract elementary classes (AEC's). Moreover, assuming in addition the Singular Cardinal Hypothesis ($SCH$), we prove a direct generalization to the more general context
Externí odkaz:
http://arxiv.org/abs/1906.09169
Autor:
Espíndola, Christian
Given a regular cardinal $\kappa$ such that $\kappa^{<\kappa}=\kappa$ (e.g., if the Generalized Continuum Hypothesis holds), we develop a proof system for classical infinitary logic that includes heterogeneous quantification (i.e., infinite alternate
Externí odkaz:
http://arxiv.org/abs/1902.00064
Autor:
Espíndola, Christian
Given a weakly compact cardinal $\kappa$, we give an axiomatization of intuitionistic first-order logic over $\mathcal{L}_{\kappa^+, \kappa}$ and prove it is sound and complete with respect to Kripke models. As a consequence we get the disjunction an
Externí odkaz:
http://arxiv.org/abs/1806.06714
Autor:
Forssell, Henrik, Espíndola, Christian
We give an analysis and generalizations of some long-established constructive completeness results in terms of categorical logic and pre-sheaf and sheaf semantics. The purpose is in no small part conceptual and organizational: from a few basic ingred
Externí odkaz:
http://arxiv.org/abs/1709.05817