Zobrazeno 1 - 10
of 232
pro vyhledávání: '"ERDÉLYI, TAMÁS"'
Autor:
Erdélyi, Tamás
We prove that there is an absolute constant $c > 0$ such that every polynomial $P$ of the form $$P(z) = \sum_{j=0}^{n}{a_jz^j}\,, \quad |a_0| = 1\,, \quad |a_j| \leq M\,, \quad a_j \in \Bbb{C}\,, \quad M \geq 1\,,$$ has at most $cn^{1/2}(1+\log M)^{1
Externí odkaz:
http://arxiv.org/abs/2409.09553
Autor:
Erdélyi, Tamás
We prove that there is an absolute constant $c > 0$ such that for every $$a_0,a_1, \ldots,a_n \in [1,M]\,, \qquad 1 \leq M \leq \frac 14 \exp \left( \frac n9 \right)\,,$$ there are $$b_0,b_1,\ldots,b_n \in \{-1,0,1\}$$ such that the polynomial $P$ of
Externí odkaz:
http://arxiv.org/abs/2407.16120
Autor:
Erdélyi, Tamás
Littlewood polynomials are polynomials with each of their coefficients in $\{-1,1\}$. A sequence of Littlewood polynomials that satisfies a remarkable flatness property on the unit circle of the complex plane is given by the Rudin-Shapiro polynomials
Externí odkaz:
http://arxiv.org/abs/2311.04395
Autor:
Erdélyi, Tamás
Let either $R_k(t) := |P_k(e^{it})|^2$ or $R_k(t) := |Q_k(e^{it})|^2$, where $P_k$ and $Q_k$ are the usual Rudin-Shapiro polynomials of degree $n-1$ with $n=2^k$. The graphs of $R_k$ on the period suggest many zeros of $R_k(t)-n$ in a dense fashion o
Externí odkaz:
http://arxiv.org/abs/2210.04385
We study the structure of the zero set of a nontrivial finite point charge electrical field $F = (X,Y)$ in the plane $\mathbb R^2$. We establish equations satisfied by the possible directions for the zero sets \{X = 0\} and $\{Y = 0\}$ separately, an
Externí odkaz:
http://arxiv.org/abs/2208.12857
Autor:
Erdélyi, Tamás
Publikováno v:
In Journal of Approximation Theory November 2024 303
Autor:
Erdélyi, Tamás
Publikováno v:
In Journal of Approximation Theory March 2025 306
We study the structure of the zero set of a finite point charge electrical field $F = (X,Y,Z)$ in $\mathbb R^3$. Indeed, mostly we focus on a finite point charge electrical field $F =(X,Y)$ in $\mathbb R^2$. The well-known conjecture is that the zero
Externí odkaz:
http://arxiv.org/abs/2106.04706
We prove new explicit upper bounds on the leverage scores of Fourier sparse functions under both the Gaussian and Laplace measures. In particular, we study $s$-sparse functions of the form $f(x) = \sum_{j=1}^s a_j e^{i \lambda_j x}$ for coefficients
Externí odkaz:
http://arxiv.org/abs/2006.07340
Autor:
Erdélyi, Tamás
Polynomials with coefficients in $\{-1,1\}$ are called Littlewood polynomials. Using special properties of the Rudin-Shapiro polynomials and classical results in approximation theory such as Jackson's Theorem, de la Vall\'ee Poussin sums, Bernstein's
Externí odkaz:
http://arxiv.org/abs/2001.08151