Zobrazeno 1 - 10
of 25
pro vyhledávání: '"ELASHVILI, A. G."'
Autor:
Alekseevsky, D. V., Belolipetsky, M. V., Gindikin, S. G., Kac, V. G., Panyushev, D. I., Timashev, D. A., Shvartsman, O. V., Elashvili, A. G., Yakimova, O. S.
The article is a report on the biography and achievements of Ernest Borisovich Vinberg, an outstanding Russian mathematician, who passed away in Moscow on May 12, 2020. We discuss his contributions to various areas of mathematics such as Riemannian a
Externí odkaz:
http://arxiv.org/abs/2108.02544
This paper is a continuation of the theory of cyclic elements in semisimple Lie algebras, developed by Elashvili, Kac and Vinberg. Its main result is the classification of semisimple cyclic elements in semisimple Lie algebras. The importance of this
Externí odkaz:
http://arxiv.org/abs/1907.09170
In this paper we study gradings on simple Lie algebras arising from nilpotent elements. Specifically, we investigate abelian subalgebras which are degree 1 homogeneous with respect to these gradings. We show that for each odd nilpotent element there
Externí odkaz:
http://arxiv.org/abs/1806.00893
Publikováno v:
Transformation Groups 18 (2013), 97-130
A theory of cyclic elements in semisimple Lie algebras is developed. It is applied to an explicit construction of regular elements in Weyl groups.
Comment: 33 pages
Comment: 33 pages
Externí odkaz:
http://arxiv.org/abs/1205.0515
Autor:
de Graaf, W. A., Elashvili, A. G.
Publikováno v:
Georgian Mathematical Journal, 16:257--278 (2009)
We describe algorithms for computing the induced nilpotent orbits in semisimple Lie algebras. We use them to obtain the induction tables for the Lie algebras of exceptional type. This also yields the classification of the rigid nilpotent orbits in th
Externí odkaz:
http://arxiv.org/abs/0905.2743
Publikováno v:
J. Lie Theory 19 (2009), 371-390
We classify all pairs (m,e), where m is a positive integer and e is a nilpotent element of a semisimple Lie algebra, which arise in the classification of simple rational W-algebras.
Comment: 15 pages
Comment: 15 pages
Externí odkaz:
http://arxiv.org/abs/0812.1571
Autor:
Elashvili, A. G., Kac, V. G.
Publikováno v:
Amer. Math. Soc. Transl. (2) vol 213 (2005), 85-104
We study and give a complete classification of good $\ZZ$-gradings of all simple finite-dimensional Lie algebras. This problem arose in the quantum Hamiltonian reduction for affine Lie algebras.
Comment: needs AMS trans2-1.cls
Comment: needs AMS trans2-1.cls
Externí odkaz:
http://arxiv.org/abs/math-ph/0312030
The purpose of this paper is to study finite-dimensional Lie algebras over a field k of characteristic zero which admit a commutative polarization (CP). Among the many results and examples, it is shown that, if k is algebraically closed, the nilradic
Externí odkaz:
http://arxiv.org/abs/math/0302229
We give a classification of the principal and distinguished nilpotent pairs in all classical Lie algebras. As a classification of the principal pairs in the exceptional simple Lie algebras was obtained earlier (see Appendix to Ginzburg's preprint mat
Externí odkaz:
http://arxiv.org/abs/math/9909082
Publikováno v:
Transformation Groups; Jun2022, Vol. 27 Issue 2, p429-470, 42p