Zobrazeno 1 - 10
of 22
pro vyhledávání: '"E. S. Golod"'
Autor:
Askar A. Tuganbaev, E. S. Golod
Publikováno v:
Journal of Mathematical Sciences. 233:656-658
We prove that B + AnnM = Ann(M/MB) for every finitely generated right module M over a strongly regular ring A and every ideal B of the ring A.
Autor:
P. S. Kolesnikov, A. N. Parshin, V. V. Kirichenko, Vladimir Petrovich Platonov, Leonid A. Bokut, Grigorii Aleksandrovich Margulis, N. S. Romanovskii, O. G. Kharlampovich, Aleksandr Vasil'evich Mikhalev, V. N. Zhelyabin, Rostislav Grigorchuk, Yu N Mal'tsev, A. Yu. Olshanskii, Yu. G. Reshetnyak, Iskander A. Taimanov, E. S. Golod, V. K. Kharchenko, A. V. Yakovlev, S. P. Novikov, L. N. Shevrin, V. G. Kats, I. P. Shestakov, A. G. Myasnikov, A. R. Kemer, Semen S. Kutateladze, Viktor Nikolaevich Latyshev
Publikováno v:
Russian Mathematical Surveys. 71:793-800
Autor:
E. S. Golod, Gleb Pogudin
Publikováno v:
Sbornik: Mathematics. 207:964-982
We show that nonfree modules of Gorenstein dimension zero over a graph algebra exist if and only if the graph is a tree. A classification of such modules is given. Bibliography: 19 titles.
Autor:
Sergei Petrovich Novikov, Aleksandr Yur'evich Ol'shanskii, A. N. Parshin, Vladimir Petrovich Platonov, Rostislav Ivanovich Grigorchuk, Aleksandr Vasil'evich Mikhalev, Iskander Asanovich Taimanov, Pavel Sergeevich Kolesnikov, Yuri Grigor'evich Reshetnyak, E. S. Golod, Victor Gershevich Kac, Ivan Pavlovich Shestakov, Aleksei Georgievich Myasnikov, Nikolai Semenovich Romanovskiy, Александр Васильевич Михалeв, Viktor Nikolaevich Zhelyabin, Семeн Самсонович Кутателадзе, Leonid Arkad'evich Bokut', Yurii Nikolaevich Mal'tsev, Grigorii Aleksandrovich Margulis, O. G. Kharlampovich, A. V. Yakovlev, Semen Samsonovich Kutateladze, V. V. Kirichenko, Lev Naumovich Shevrin, Vladislav Kirillovich Kharchenko, Aleksandr Robertovich Kemer, Viktor Nikolaevich Latyshev
Publikováno v:
Uspekhi Matematicheskikh Nauk. 71:193-199
Autor:
M. A. Aĭzerman, D. V. Anosov, V. I. Arnol′d, A. A. Borovkov, E. M. Braverman, G. S. Ceĭtin, N. V. Efimov, Ju. L. Eršov, V. M. Gluškov, E. S. Golod, A. A. Gončar, M. I. Graev, I. A. Ibragimov, A. P. Juškevič, A. A. Kirillov, M. G. Kreĭn, O. A. Ladyženskaja, A. I. Mal′cev, Ju. I. Manin, G. I. Marčuk, B. S. Mitjagin, N. N. Moiseev, S. P. Novikov, V. P. Palamodov, A. Pełczyński, I. I. Pjateckiĭ-Šapiro, V. I. Ponomarev, A. G. Postnikov, L. I. Rozonoèr, N. A. Šanin, A. B. Sidlovskiĭ, S. L. Sobolev, A. N. Tihonov, V. A. Toponogov, I. M. Vinogradov, M. I. Višik, A. G. Vituškin, I. D. Zaslavskiĭ
Autor:
E. S. Golod
Publikováno v:
Journal of Mathematical Sciences. 177:862-867
In the author’s previous papers, the connection between generating syzygy modules by binary relations, the property of a commutative ring to be arithmetical (that is to have a distributive ideal lattice), and the use of the so-called S-polynomials
Autor:
E. S. Golod
Publikováno v:
Journal of Mathematical Sciences. 140:239-242
Let R be a commutative ring. It is proved that for verification of whether a set of elements {fα} of the free associative algebra over R is a Grobner basis (with respect to some admissible monomial order) of the (bilateral) ideal that the elements f
Autor:
A.L. Shmelkin, V. V. Borisenko, Natalia K. Iyudu, Aleksandr Vasil'evich Mikhalev, E. S. Golod
Publikováno v:
Journal of Mathematical Sciences. 131:5861-5866
Autor:
E. S. Golod
Publikováno v:
Journal of Mathematical Sciences. 213:143-144
It is proved that a commutative ring with identity R is arithmetic (i.e., the ideal lattice of R is distributive) if and only if for any finitely generated (or any finitely presented) R-module M and any ideal I of R the equality I +AnnM = Ann(M/IM) h