Zobrazeno 1 - 10
of 28
pro vyhledávání: '"E. M. Dyn′kin"'
Autor:
I. A. Boricheva, E. M. Dyn'kin
Publikováno v:
Journal of Mathematical Sciences. 80:1892-1896
The lassical Sarason transform is the canonical isomorphism of the model space H2/gqH2 (θ is an inner function generated by a single point mass) onto the standard L2 space. In the paper the image of the space of smooth functions H21={f: f′ e H2} u
Autor:
E. M. Dyn’kin
Publikováno v:
Journal d Analyse Mathematique. 60:45-70
Autor:
E. M. Dyn'kin, S. V. Kisliakov
Publikováno v:
Lecture Notes in Mathematics ISBN: 9783540578703
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::7dff21a542f25f6162dfb287a3483a7e
https://doi.org/10.1007/bfb0100211
https://doi.org/10.1007/bfb0100211
Autor:
E. M. Dyn’kin
Publikováno v:
Commutative Harmonic Analysis IV ISBN: 9783642081033
This article is an immediate continuation to the article “Methods of the Singular Integrals: Hilbert Transform and Calderon-Zygmund Theory”, published in Vol. 15 of this series (Dyn’kin (1987)).
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::a60797f29d00ccb2e949bbfba4d9ea6c
https://doi.org/10.1007/978-3-662-06301-9_2
https://doi.org/10.1007/978-3-662-06301-9_2
Autor:
E. M. Dyn’kin
Publikováno v:
Commutative Harmonic Analysis I ISBN: 9783642057397
The integral convolution operator in ℝn $$ Tf\left( x \right) = \int\limits_{{\mathbb{R}^n}} {k\left( {x - y} \right)f\left( y \right)dy} $$ (0.1) is well defined and bounded in L p (ℝn), 1≤p ≤ ∞, as k∈ L l(ℝn). However, operators very
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::f8057ca76f3edc339cf4afc7f8bab229
https://doi.org/10.1007/978-3-662-02732-5_3
https://doi.org/10.1007/978-3-662-02732-5_3
Autor:
E. M. Dyn'kin, B. P. Osilenker
Publikováno v:
Journal of Soviet Mathematics. 30:2094-2154
We give a survey of research on the problem of single-weighted and double-weighted estimates of strong and weak types for the Hardy-Littlewood maximal function, Riesz potentials, singular integral operators, and harmonic functions. Necessary and suff
Publikováno v:
Journal of Applied Mechanics and Technical Physics. 26:519-525
Autor:
E. M. Dyn'kin, A. N. Podkorytov
Publikováno v:
Journal of Soviet Mathematics. 22:1226-1231
It is proved that for any algebraic polynomial P of degree at most n we have for 1 p ≤ + t8, x ≥ 1 the inequality For p ≥1 and x ≥ 1 we construct a polynomial P* of degree n for which
Autor:
E M Dyn'kin
Publikováno v:
Mathematics of the USSR-Sbornik. 37:97-117
Let , let be a closed subset of and let . Let be the space of functions analytic in and continuous in such that everywhere in . Let be the space of functions continuous on that satisfy (*) everywhere on . It is clear that . The set is said to be -int