Zobrazeno 1 - 10
of 24
pro vyhledávání: '"E. I. Dinaburg"'
Publikováno v:
Journal of Statistical Physics. 141:342-358
We consider the two-dimensional Navier-Stokes system on the unit square with no-slip boundary condition. The nonlinear evolution equation for the stream function is studied. Under some hypothesis, we show that the decay of Fourier modes of solutions
Publikováno v:
Journal of Statistical Physics. 135:737-750
We formulate a new boundary value problem for the 2D Navier-Stokes system on the unit square. Under some suitable assumptions on the initial velocity, we obtain quantitative decay estimates of the Fourier modes of both the vorticity and the velocity.
Publikováno v:
Russian Mathematical Surveys. 59:1061-1078
The Cauchy problem is considered for the Navier-Stokes system. Local and global existence and uniqueness theorems are given for initial data whose Fourier transform decays at infinity as a power-law function with negative exponent and has a power-law
Autor:
Yakov G. Sinai, E. I. Dinaburg
Publikováno v:
Ergodic Theory and Dynamical Systems. 24:1443-1450
Autor:
E. I. Dinaburg, Yakov G. Sinai
Publikováno v:
Problems of Information Transmission. 39:47-50
For the quasilinear approximation of the 3D Navier–Stokes system proposed earlier by the authors in [1], some conditions of solution regularity are considered and the theorem on existence and uniqueness of the Cauchy problem for some class of initi
Autor:
Ya. Sinai, E. I. Dinaburg
Publikováno v:
Moscow Mathematical Journal. 1:381-388
Publikováno v:
Communications in Mathematical Physics. 189:559-575
We study the spectral properties of a two-dimensional Schrodinger operator with a uniform magnetic field and a small external periodic field: $$$$ where $$$$ and \(\), \(\) are small parameters. Representing \(\) as the direct integral of one-dimensi
Autor:
E I Dinaburg
Publikováno v:
Russian Mathematical Surveys. 52:451-499
ContentsIntroductionPart I. One-dimensional Schrodinger operator with a quasiperiodic potential §1. Anderson localization for a one-dimensional Schrodinger difference operator with a quasiperiodic potential §2. On the spectrum of the almost Mathieu
Autor:
Anatolii Moiseevich Vershik, N N Chentsova, Leonid A. Bunimovich, S A Pirogov, Boris Marcovich Gurevich, Konstantin Khanin, V I Oseledets, Grigorii Aleksandrovich Margulis, S. P. Novikov, E I Dinaburg
Publikováno v:
Russian Mathematical Surveys. 51:765-778
Autor:
E. I. Dinaburg, Alexander E. Mazel
Publikováno v:
Journal of Statistical Physics. 74:533-563
For the SOS model defined by the Hamiltonian\(H(\phi ) = \frac{1}{2}\sum\nolimits_{\left\langle {x,x'} \right\rangle } {\left| {\phi _x - \phi _{x'} } \right| + h\sum\nolimits_x {\phi _x } } \), whereφ x ,φ x′ ,∈{1,2,...},h>0,x∈ℤ d ,d⩾2 i