Zobrazeno 1 - 10
of 110
pro vyhledávání: '"E. García-Gonzalo"'
Publikováno v:
Journal of Computational and Applied Mathematics. 433:115305
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Forecast of the higher heating value in biomass torrefaction by means of machine learning techniques
Autor:
F. Sánchez Lasheras, P.J. García Nieto, J.P. Paredes–Sánchez, P. Riesgo Fernández, E. García Gonzalo
Publikováno v:
Journal of Computational and Applied Mathematics. 357:284-301
Torrefaction of biomass can be explained as a mild type of pyrolysis at temperatures usually ranging between 200 and 300 °C in lack of oxygen. Torrefaction of biomass enhances properties as the moisture content and calorific value. The objective of
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Ecological Engineering. 81:534-542
In this research work, a practical new hybrid model to predict the successful growth cycle of Spirulina platensis was proposed. The model was based on particle swarm optimization (PSO) in combination with multivariate adaptive regression splines (MAR