Zobrazeno 1 - 10
of 120
pro vyhledávání: '"E Pastukhova"'
Autor:
S. E. Pastukhova
Publikováno v:
Contemporary Mathematics. Fundamental Directions. 69:134-151
We consider second-order parabolic equations with bounded measurable \(\varepsilon\)-periodic coefficients. To solve the Cauchy problem in the layer \( R^d \times(0,T) \) with the nonhomogeneous equation, we obtain approximations in the norm \(\|\cdo
Autor:
S. E. Pastukhova
Publikováno v:
Functional Analysis and Its Applications. 56:310-319
Autor:
S. E. Pastukhova
Publikováno v:
Journal of Mathematical Sciences. 268:473-492
Autor:
S. E. Pastukhova
Publikováno v:
Journal of Mathematical Sciences. 267:382-397
Autor:
S. E. Pastukhova, O. A. Evseeva
Publikováno v:
Российский технологический журнал, Vol 5, Iss 5, Pp 60-69 (2017)
The Cauchy problem for a linear second order parabolic equation with 1-periodic measurable coefficients is considered Rd, d ≥ 2. The problem models diffusion in a nonhomogeneous periodic medium. The appropriate diffusion operator A is self-adjoint
Externí odkaz:
https://doaj.org/article/ebe0a46233c84fe297a804a01b05bb01
Autor:
S. E. Pastukhova
Publikováno v:
Journal of Mathematical Sciences. 265:1008-1026
We study homogenization of a second-order elliptic differential operator Aε = - div a(x/ε)∇ acting in an ε-periodically perforated space, where ε is a small parameter. Coefficients of the operator Aε are measurable ε-periodic functions. The s
Autor:
S. E. Pastukhova
Publikováno v:
Journal of Mathematical Sciences. 262:312-328
Publikováno v:
Transportation Research Procedia. 63:676-685
Autor:
S. E. Pastukhova
Publikováno v:
Journal of Mathematical Sciences. 259:230-243
For elliptic operators in divergence form with e-periodic coefficients of an arbitrary even order 2m ≥ 4 we obtain e2-order approximations of resolvents in the energy operator norm as e → 0.
Autor:
S. E. Pastukhova
Publikováno v:
Journal of Mathematical Sciences. 255:488-502
We study homogenization of fourth order elliptic operators Ae in divergence form with e-periodic coefficients in ℝd and obtain an e2-order approximation of the resolvents (Ae + 1)−1 in the energy operator (L2→H2)-norm as e → 0.