Zobrazeno 1 - 10
of 32
pro vyhledávání: '"E M Semenov"'
Autor:
R. E. Zvolinskii, E. M. Semenov
Publikováno v:
Mathematical Notes. 112:881-884
Autor:
E. M. Semenov, R. E. Zvolinskii
Publikováno v:
Sibirskii matematicheskii zhurnal. 62:758-763
Autor:
P. V. Semenov, Yu. A. Brudnyi, V. Ya. Lin, Saulius Norvidas, Mikhail Zaidenberg, B. S. Mityagin, A. L. Koldobskii, E. M. Semenov
Publikováno v:
Russian Mathematical Surveys. 74:935-946
Autor:
E. M. Semenov, S. V. Astashkin
Publikováno v:
Siberian Mathematical Journal. 56:21-27
Let x be an integrable function on [0, 1] and let Px be the Paley function constructed from the expansion of x in the Fourier-Haar series. If E is a rearrangement invariant space on [0, 1] then P(E) stands for the space with the norm ‖Px‖E. Among
Autor:
L. A. Aksent′ev, T. N. Arutyunyan, A. E. Ètkin, V. A. Kasimov, V. È. Katsnel′son, A. S. Madgerova, Algis Morkeliūnas, I. R. Nezhmetdinov, S. Ya. Novikov, M. I. Ostrovskiĭ, E. M. Semenov, E. V. Tokarev, V. S. Vladimirov, N. V. Zabolotskiĭ
Covers a range of topics including integral representations, complex analysis, differential equations, and functional analysis.
Publikováno v:
Russian Mathematics. 52:41-46
We prove that if E is a rearrangement-invariant space, then a boundedly complete basis exists in E, if and only if one of the following conditions holds: 1) E is maximal and E ≠ L1[0, 1]; 2) a certain (any) orthonormal system of functions from L∞
Autor:
K. S. Kazaryan, E. M. Semenov
Publikováno v:
Mathematical Notes. 75:530-541
In this paper, we study the RUC-basis properties of the Olevskii system in rear- rangement-invariant spaces. In particular, it is proved that the Olevskii system forms an RUC basis in Lp(0, 1) if and only if 2 ≤ p< ∞.
Autor:
Sergey V. Astashkin, E. M. Semenov
Publikováno v:
Doklady Mathematics. 86:539-541
Autor:
E. M. Semenov, I. Ya. Shneiberg
Publikováno v:
Siberian Mathematical Journal. 31:119-127