Zobrazeno 1 - 10
of 32
pro vyhledávání: '"Dyson conjecture"'
Publikováno v:
AIMS Mathematics, Vol 9, Iss 5, Pp 12305-12314 (2024)
Lieb concavity theorem, successfully solved the Wigner-Yanase-Dyson conjecture, which is a very important theorem, and there are many proofs of it. Generalization of the Lieb concavity theorem has been obtained by Huang, which implies that it is join
Externí odkaz:
https://doaj.org/article/f05ea33858e24b65a778a4d907b93e31
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Sills, Andrew V.
Publikováno v:
In Journal of Combinatorial Theory, Series A 2006 113(7):1368-1380
Publikováno v:
In Journal of Combinatorial Theory, Series A 2009 116(1):12-29
Publikováno v:
In Journal of Combinatorial Theory, Series A 2008 115(8):1417-1435
Autor:
Haonan Zhang
Publikováno v:
Advances in Mathematics. 365:107053
In this paper we study the joint convexity/concavity of the trace functions Ψ p , q , s ( A , B ) = Tr ( B q 2 K ⁎ A p K B q 2 ) s , p , q , s ∈ R , where A and B are positive definite matrices and K is any fixed invertible matrix. We will give
Autor:
Alexey Gordeev
Publikováno v:
The Electronic Journal of Combinatorics. 25
We formulate and prove a formula for the constant term for a certain class of Laurent polynomials, which include the Dyson conjecture and its generalizations by Bressoud and Goulden. Our method is explicit Combinatorial Nullstellensatz.
Autor:
Doron Zeilberger, Andrew V. Sills
Publikováno v:
Experiment. Math. 15, iss. 2 (2006), 187-192
We present a case study in {\it experimental} yet {\it rigorous} mathematics by describing an algorithm, fully implemented in both Mathematica and Maple, that {\it automatically conjectures}, and then {\it automatically proves}, closed-form expressio
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a03e690e1508ca01d28cf7043c4383bd
Autor:
Andrew V. Sills
Publikováno v:
Journal of Combinatorial Theory, Series A. 113(7):1368-1380
Dyson's celebrated constant term conjecture ({\em J. Math. Phys.}, 3 (1962): 140--156) states that the constant term in the expansion of $\prod_{1\leqq i\neq j\leqq n} (1-x_i/x_j)^{a_j}$ is the multinomial coefficient $(a_1 + a_2 + \cdots + a_n)!/ (a
Autor:
David M. Bressoud, Doron Zeilberger
Publikováno v:
Discrete Mathematics. 306:1039-1059
Let (y)"a=(1-y)(1-qy)...(1-q^a^-^1y). We prove that the constant term of the Laurent polynomial @?"1"=