Zobrazeno 1 - 10
of 98
pro vyhledávání: '"Dynamic network identification"'
Learning the dynamics of complex systems features a large number of applications in data science. Graph-based modeling and inference underpins the most prominent family of approaches to learn complex dynamics due to their ability to capture the intri
Externí odkaz:
http://arxiv.org/abs/1807.02013
Conference
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Weerts, Harm H.M., Galrinho, Miguel, Bottegal, Giulio, Hjalmarsson, Håkan, den Hof, Paul M.J. Van
Publikováno v:
In IFAC PapersOnLine 2018 51(15):844-849
Publikováno v:
In IFAC PapersOnLine 2015 48(28):1409-1414
Publikováno v:
In Automatica August 2012 48(8):1553-1565
Autor:
Morelli, Federico
Publikováno v:
Other. Université de Lyon, 2021. English. ⟨NNT : 2021LYSEC002⟩
At the roots of every engineering field there are mathematical models. They allow us to make predictions on the evolution of a process, monitor the health of a plant and design a control scheme. System Identification provides us with techniques for o
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::edee6dab77f0a13a5599f0fa9abec1e1
https://theses.hal.science/tel-03267982
https://theses.hal.science/tel-03267982
Publikováno v:
IFAC-Papers
Identification of dynamic networks in prediction error setting often requires the solution of a non-convex optimization problem, which can be difficult to solve especially for large-scale systems. Focusing on ARMAX models of dynamic networks, we inst
Publikováno v:
Journal of Physics: Conference Series
In many practical applications it might be desirable to excite only point at a time in an interconnection of multiple dynamic subsystems (e.g. large-scale system). Therefore multiple experiments need to be combined to successfully identify one or mor
Publikováno v:
GlobalSIP
Learning the dynamics of complex systems features a large number of applications in data science. Graph-based modeling and inference underpins the most prominent family of approaches to learn complex dynamics due to their ability to capture the intri
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c97f306ca431ef3f635362b251be744a
Publikováno v:
IFAC-PapersOnLine. 48:1409-1414
Dynamic networks are structured interconnections of dynamical systems driven by external excitation and disturbance signals. We develop the notion of network identifiability, a property of a parameterized model set that ensures that module dynamics a