Zobrazeno 1 - 10
of 345
pro vyhledávání: '"Dylla, M"'
Autor:
Toriyama, M. Y., Ganose, A. M., Dylla, M., Anand, S., Park, J., Brod, M. K., Munro, J., Persson, K. A., Jain, A., Snyder, G. J.
The electronic density of states (DOS) highlights fundamental properties of materials that oftentimes dictate their properties, such as the band gap and Van Hove singularities. In this short note, we discuss how sharp features of the density of state
Externí odkaz:
http://arxiv.org/abs/2103.03469
Autor:
Toriyama, MY, Ganose, AM, Dylla, M, Anand, S, Park, J, Brod, MK, Munro, J, Persson, KA, Jain, A, Snyder, GJ
The electronic density of states (DOS) highlights fundamental properties of materials that oftentimes dictate their properties, such as the band gap and Van Hove singularities. In this short note, we discuss how sharp features of the density of state
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______1032::f0987d0c773afddab72217caa588ed70
http://hdl.handle.net/10044/1/99166
http://hdl.handle.net/10044/1/99166
Autor:
Mackey CA; Neuroscience Graduate Program, Vanderbilt University, Nashville, Tennessee, United States.; Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States., Dylla M; Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States., Bohlen P; Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States., Grigsby J; Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States., Hrnicek A; Department of Neurobiology and Anatomy, Wake Forest University Health Sciences, Winston-Salem, North Carolina, United States., Mayfield J; Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States., Ramachandran R; Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States.
Publikováno v:
Journal of neurophysiology [J Neurophysiol] 2023 Mar 01; Vol. 129 (3), pp. 591-608. Date of Electronic Publication: 2023 Jan 18.
Autor:
Ward, L, Dunn, A, Faghaninia, A, Zimmermann, NER, Bajaj, S, Wang, Q, Montoya, J, Chen, J, Bystrom, K, Dylla, M, Chard, K, Asta, M, Persson, KA, Snyder, GJ, Foster, I, Jain, A
As materials data sets grow in size and scope, the role of data mining and statistical learning methods to analyze these materials data sets and build predictive models is becoming more important. This manuscript introduces matminer, an open-source,
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::779ed869572ef9c57469d0c402b3cfa7
https://escholarship.org/uc/item/6jn170sr
https://escholarship.org/uc/item/6jn170sr
Autor:
Park J; Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, CA, USA. qkwnstn@gmail.com., Dylla M; Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA., Xia Y; Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA., Wood M; Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA., Snyder GJ; Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA. jeff.snyder@northwestern.edu., Jain A; Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, CA, USA. ajain@lbl.gov.
Publikováno v:
Nature communications [Nat Commun] 2021 Jun 08; Vol. 12 (1), pp. 3425. Date of Electronic Publication: 2021 Jun 08.
Machine Learning and First-Principle Predictions of Materials with Low Lattice Thermal Conductivity.
Autor:
Lin, Chia-Min1 (AUTHOR) cleanfreexyz@gmail.com, Khatri, Abishek1 (AUTHOR) khatria@uab.edu, Yan, Da2 (AUTHOR) yanda@iu.edu, Chen, Cheng-Chien1 (AUTHOR) chencc@uab.edu
Publikováno v:
Materials (1996-1944). Nov2024, Vol. 17 Issue 21, p5372. 13p.
Autor:
Dylla, M., Theobald, M.
Publikováno v:
Research Report
Learning the parameters of complex probabilistic-relational models from labeled training data is a standard technique in machine learning, which has been intensively studied in the subfield of Statistical Relational Learning (SRL), but---so far---thi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______1874::7a9016ce8c77d670e9d44e41355e7dfd
https://hdl.handle.net/11858/00-001M-0000-0019-8492-611858/00-001M-0000-0019-8496-D
https://hdl.handle.net/11858/00-001M-0000-0019-8492-611858/00-001M-0000-0019-8496-D
Autor:
Ji, Shumin1 (AUTHOR) aassdehj123@163.com, Zhang, Yujie1 (AUTHOR) zyj229583@163.com, Huang, Yanyan1 (AUTHOR) yyhuang@ntu.edu.cn, Yu, Zhongwei1 (AUTHOR) yu.zw@ntu.edu.cn, Zhou, Yong2 (AUTHOR) xglin@cqu.edu.cn, Lin, Xiaogang2 (AUTHOR)
Publikováno v:
Materials (1996-1944). Aug2024, Vol. 17 Issue 15, p3741. 13p.
Autor:
Santonocito, A.1,2 (AUTHOR), Patrizi, B.2,3 (AUTHOR) barbara.patrizi@ino.cnr.it, Pirri, A.4 (AUTHOR), Vannini, M.2 (AUTHOR), Toci, G.2 (AUTHOR)
Publikováno v:
Scientific Reports. 7/2/2024, Vol. 14 Issue 1, p1-17. 17p.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.