Zobrazeno 1 - 10
of 82
pro vyhledávání: '"Dyakonova, Elena"'
Autor:
Vatutin, Vladimir, Dyakonova, Elena
Let \begin{equation*} S_{0}=0,\quad S_{n}=X_{1}+...+X_{n},\ n\geq 1, \end{equation*} be a random walk whose increments belong without centering to the domain of attraction of a stable law with scaling constants $a_{n}$, that provide convergence as $n
Externí odkaz:
http://arxiv.org/abs/2409.02215
Let $\left\{ S_{n},n\geq 0\right\} $ be a random walk whose increment distribution belongs without centering to the domain of attraction of an $% \alpha $-stable law, i.e., there are some scaling constants $a_{n}$ such that the sequence $S_{n}/a_{n},
Externí odkaz:
http://arxiv.org/abs/2311.10445
Let $\{S_n,n\geq 0\} $ be a random walk whose increments belong without centering to the domain of attraction of an $\alpha$-stable law $\{Y_t,t\geq 0\}$, i.e. $S_{nt}/a_n\Rightarrow Y_t,t\geq 0,$ for some scaling constants $a_n$. Assuming that $S_0=
Externí odkaz:
http://arxiv.org/abs/2303.07776
Autor:
Vatutin, Vladimir, Dyakonova, Elena
Let $\left\{ Z_{n},n=0,1,2,...\right\} $ be a critical branching process in random environment and let $\left\{ S_{n},n=0,1,2,...\right\} $ be its associated random walk. It is known that if the increments of this random walk belong (without centerin
Externí odkaz:
http://arxiv.org/abs/2209.13611
Autor:
Chelpachenko, Oleg B., Gusev, Aleksey A., Pimbursky, Ivan P., Butenko, Andrey S., Samokhin, Konstantin A., Zherdev, Konstantin V., Yatsyk, Sergey P., Fisenko, Andrey P., Dyakonova, Elena Yu.
Publikováno v:
In Journal of Pediatric Surgery February 2025 60(2)
Autor:
Vatutin, Vladimir, Dyakonova, Elena
We study properties of a $p-$type subcritical branching process in random environment initiated at moment zero by a vector $\mathbf{z}=\left( z_{1},..,z_{p}\right) $\ of particles of different types. Assuming that the process belongs to the class of
Externí odkaz:
http://arxiv.org/abs/2007.02289
A critical branching process with immigration which evolve in a random environment is considered. Assuming that immigration is not allowed when there are no individuals in the aboriginal population we investigate the tail distribution of the so-calle
Externí odkaz:
http://arxiv.org/abs/1905.03535
Autor:
Vatutin, Vladimir, Dyakonova, Elena
We study the asymptotic behaviour of the survival probability of a multi-type branching processes in random environment. The class of processes we consider corresponds, in the one-dimensional situation, to the intermediately subcritical case. We show
Externí odkaz:
http://arxiv.org/abs/1903.12491
Autor:
Oldakovskiy, Vladislav, Murashkin, Nikolay, Lokhmatov, Maksim, Gusev, Aleksey, Tupylenko, Artem, Budkina, Tatiana, Yatzik, Sergey, Dyakonova, Elena, Abaykhanov, Rasul, Fisenko, Andrey
Publikováno v:
In Journal of Pediatric Surgery April 2023 58(4):619-623
Using the annealed approach we investigate the asymptotic behavior of the survival probability of a critical multitype branching process evolving in i.i.d. random environment. We show under rather general assumptions on the form of the offspring gene
Externí odkaz:
http://arxiv.org/abs/1612.00681