Zobrazeno 1 - 10
of 62
pro vyhledávání: '"Dyakonova, E. E."'
Autor:
Dyakonova, E. E.
Publikováno v:
Proc. Steklov Inst. Math. 316 (2022)
We consider branching process evolving in i.i.d. random environment. It is assumed that the process is intermediately subcritical. We investigate the initial stage of the evolution of the process given its survival for a long time.
Comment: 23 p
Comment: 23 p
Externí odkaz:
http://arxiv.org/abs/2110.01836
Autor:
Dyakonova, E. E., Vatutin, V. A.
We consider a subcritical branching process in an i.i.d. random environment, in which one immigrant arrives at each generation. We consider the event $% \mathcal{A}_{i}(n)$ that all individuals alive at time $n$ are offspring of the immigrant which j
Externí odkaz:
http://arxiv.org/abs/2009.03672
We consider an indecomposable Galton-Watson branching process with countably infinitely many types. Assuming that the process is critical and allowing for infinite variance of the offspring sizes of some (or all) types of particles we describe the as
Externí odkaz:
http://arxiv.org/abs/2002.12627
Autor:
Vatutin, V. A., Dyakonova, E. E.
We consider a population of particles with unit life length. Dying each particle produces offspring whose size depends on the random environment specifying the reproduction law of all particles of the given generation and on the number of relatives o
Externí odkaz:
http://arxiv.org/abs/1812.10304
Autor:
Vatutin, V. A., Dyakonova, E. E.
A critical branching process $\left\{Z_{k},k=0,1,2,...\right\} $ in a random environment generated by a sequence of independent and identically distributed random reproduction laws is considered.\ Let $Z_{p,n}$ be the number of particles at time $p\l
Externí odkaz:
http://arxiv.org/abs/1608.08062
Autor:
Vatutin, V. A., Dyakonova, E. E.
The asymptotic behavior, as $n\rightarrow \infty $ of the conditional distribution of the number of particles in a decomposable critical branching process $\mathbf{Z}% (m)=(Z_{1}(m),...,Z_{N}(m)),$ with $N$ types of particles at moment $m=n-k,\, k=o(
Externí odkaz:
http://arxiv.org/abs/1509.00759
Publikováno v:
Markov Process. Related Fields 16 (2010), no. 2, 329-350
Let ${Z_{n},n\geq 0} $ be a critical branching process in random environment and let $T$ be its moment of extinction. Under the annealed approach we prove, as $n\to \infty ,$ a limit theorem for the number of particles in the process at moment $n$ gi
Externí odkaz:
http://arxiv.org/abs/1001.2413
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Vatutin, V. A.1 (AUTHOR) vatutin@mi-ras.ru, Dyakonova, E. E.1 (AUTHOR)
Publikováno v:
Journal of Mathematical Sciences. Apr2020, Vol. 246 Issue 4, p569-579. 11p.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.