Zobrazeno 1 - 5
of 5
pro vyhledávání: '"Duygu Çelİk Özen"'
Autor:
Oğuzhan Altun, Duygu Çelik Özen, Şuayip Burak Duman, Numan Dedeoğlu, İbrahim Şevki Bayrakdar, Gözde Eşer, Özer Çelik, Muhammed Akif Sümbüllü, Ali Zakir Syed
Publikováno v:
BMC Oral Health, Vol 24, Iss 1, Pp 1-15 (2024)
Abstract Background Maxillofacial complex automated segmentation could alternative traditional segmentation methods to increase the effectiveness of virtual workloads. The use of DL systems in the detection of maxillary sinus and pathologies will bot
Externí odkaz:
https://doaj.org/article/63d90640b3f648b4acd19e07a7a1f500
Autor:
Pelin Senem Ozsunkar, Duygu Çelİk Özen, Ahmed Z Abdelkarim, Sacide Duman, Mehmet Uğurlu, Mehmet Rıdvan Demİr, Batuhan Kuleli, Özer Çelİk, Busra Seda Imamoglu, Ibrahim Sevki Bayrakdar, Suayip Burak Duman
Publikováno v:
BMC Oral Health, Vol 24, Iss 1, Pp 1-11 (2024)
Abstract Background Deep learning model trained on a large image dataset, can be used to detect and discriminate targets with similar but not identical appearances. The aim of this study is to evaluate the post-training performance of the CNN-based Y
Externí odkaz:
https://doaj.org/article/d81690ea29474ab9a5a5c20b9e4cbb55
Autor:
Numan DEDEOĞLU, Oğuzhan ALTUN, Şuayip Burak DUMAN, Büşra ARIKAN, Gözde EŞER, Duygu ÇELİK ÖZEN
Publikováno v:
Turkiye Klinikleri Journal of Dental Sciences. 28:551-557
Autor:
Ahmed Z. Abdelkarim, Ahmed A. Almeshari, Duygu Celik Ozen, Ayman R. Khalifa, Nader N. Rezallah, Suayip Burak Duman, Sonam Khurana
Publikováno v:
Healthcare, Vol 12, Iss 16, p 1563 (2024)
Background: Morphological differences in the temporomandibular joint (TMJ) are crucial for the treatment of patients with cleft lip and palate (CLP). This study aims to evaluate and compare the TMJ parameters in patients with unilateral and bilateral
Externí odkaz:
https://doaj.org/article/8ea4c207e4864e4dafcaa3d357d50f20
Autor:
Şuayip Burak Duman, Ali Z. Syed, Duygu Celik Ozen, İbrahim Şevki Bayrakdar, Hassan S. Salehi, Ahmed Abdelkarim, Özer Celik, Gözde Eser, Oğuzhan Altun, Kaan Orhan
Publikováno v:
Diagnostics, Vol 12, Iss 9, p 2244 (2022)
The present study aims to validate the diagnostic performance and evaluate the reliability of an artificial intelligence system based on the convolutional neural network method for the morphological classification of sella turcica in CBCT (cone-beam
Externí odkaz:
https://doaj.org/article/7af6ef506cf0434092019423263fb57e