Zobrazeno 1 - 10
of 29
pro vyhledávání: '"Dustin J. Kempton"'
Autor:
Azim Ahmadzadeh, Rohan Adhyapak, Kartik Chaurasiya, Laxmi Alekhya Nagubandi, V. Aparna, Petrus C. Martens, Alexei Pevtsov, Luca Bertello, Alexander Pevtsov, Naomi Douglas, Samuel McDonald, Apaar Bawa, Eugene Kang, Riley Wu, Dustin J. Kempton, Aya Abdelkarem, Patrick M. Copeland, Sri Harsha Seelamneni
Publikováno v:
Scientific Data, Vol 11, Iss 1, Pp 1-15 (2024)
Abstract We present the Manually Annotated GONG Filaments in H-alpha Observations (MAGFiLO v1.0) dataset. This dataset contains 10,244 annotated filaments from 1,593 observations captured by the Global Oscillation Network Group (GONG), spanning the y
Externí odkaz:
https://doaj.org/article/13a69e292c4f40f0b27193c2e121b83f
Publikováno v:
IEEE Transactions on Pattern Analysis and Machine Intelligence. 45:1501-1513
In Machine Learning, a supervised model's performance is measured using the evaluation metrics. In this study, we first present our motivation by revisiting the major limitations of these metrics, namely one-dimensionality, lack of context, lack of i
Publikováno v:
Neural Computing and Applications. 34:13339-13353
Autor:
Manolis K. Georgoulis, Sunitha Basodi, Sushant S. Mahajan, Dustin J. Kempton, Soukaina Filali Boubrahimi, Petrus C. Martens, Azim Ahmadzadeh, Rafal A. Angryk, Michael A. Schuh, Berkay Aydin, Xumin Cai, Shah Muhammad Hamdi
Publikováno v:
Scientific Data, Vol 7, Iss 1, Pp 1-13 (2020)
Scientific Data
Scientific Data
We introduce and make openly accessible a comprehensive, multivariate time series (MVTS) dataset extracted from solar photospheric vector magnetograms in Spaceweather HMI Active Region Patch (SHARP) series. Our dataset also includes a cross-checked N
Strong solar flares are indeed rare events, which make the flare classification task a rare-event problem. Solar energetic particle events are even rarer space weather events as only a few instance...
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::3ad9d6fff93f4ea08ded1ac426f91cc8
https://doi.org/10.1002/essoar.10508222.1
https://doi.org/10.1002/essoar.10508222.1
Publikováno v:
Artificial Intelligence and Soft Computing ISBN: 9783030879853
ICAISC (1)
ICAISC (1)
One of the limiting factors in training data-driven, rare-event prediction algorithms is the scarcity of the events of interest resulting in an extreme imbalance in the data. There have been many methods introduced in the literature for overcoming th
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::f3ee24082e87b55a194920b590b3f2ee
https://doi.org/10.1007/978-3-030-87986-0_26
https://doi.org/10.1007/978-3-030-87986-0_26
Autor:
Rafal A. Angryk, Sushant S. Mahajan, Maxwell Hostetter, Berkay Aydin, Azim Ahmadzadeh, Manolis K. Georgoulis, Dustin J. Kempton
Publikováno v:
ICMLA
We present a case study for time series prediction models in extreme class-imbalance problems. We have extracted multiple properties from the Space Weather ANalytics for Solar Flares (SWAN-SF) benchmark dataset which comprises of magnetic features fr
Autor:
Azim Ahmadzadeh, Maxwell Hostetter, Rafal A. Angryk, Berkay Aydin, Manolis K. Georgoulis, Dustin J. Kempton
Publikováno v:
IEEE BigData
Machine learning-based space weather analytics has attracted much attention due to the potential damages that can be caused by the extreme space weather events. Using a recently released data benchmark, named SWAN-SF, designed for solar flare forecas
Publikováno v:
IEEE BigData
We use a well-known deep neural network framework, called Mask R-CNN, for identification of solar filaments in full-disk H-alpha images from Big Bear Solar Observatory (BBSO). The image data, collected from BBSO's archive, are integrated with the spa
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5c344eab0407f5154611a1b01a6f38b9
http://arxiv.org/abs/1912.02743
http://arxiv.org/abs/1912.02743
Autor:
Dustin J. Kempton, Manolis K. Georgoulis, Azim Ahmadzadeh, Rafal A. Angryk, Berkay Aydin, Maxwell Hostetter, Sushant S. Mahajan
Publikováno v:
IEEE BigData
In analyses of rare-events, regardless of the domain of application, class-imbalance issue is intrinsic. Although the challenges are known to data experts, their explicit impact on the analytic and the decisions made based on the findings are often o
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f01745bb6b334064a3da64669c3b62a5