Zobrazeno 1 - 10
of 23
pro vyhledávání: '"Durhasan Turgut Tollu"'
Autor:
Stevo Stević, Durhasan Turgut Tollu
Publikováno v:
AIMS Mathematics, Vol 8, Iss 9, Pp 20561-20575 (2023)
We consider the two-dimensional nonlinear system of difference equations $ x_n = x_{n-k}\frac{ay_{n-l}+by_{n-(k+l)}}{cy_{n-l}+dy_{n-(k+l)}},\quad y_n = y_{n-k}\frac{{\alpha} x_{n-l}+{\beta} x_{n-(k+l)}}{{\gamma} x_{n-l}+{\delta} x_{n-(k+l)}}, $
Externí odkaz:
https://doaj.org/article/1fadb3545c954cd39f71ab96f1aa35df
Publikováno v:
AIMS Mathematics, Vol 8, Iss 3, Pp 6309-6322 (2023)
In this paper, we investigate the qualitative behavior of the fuzzy difference equation $ \begin{equation*} z_{n+1} = \frac{Az_{n-s}}{B+C\prod\limits_{i = 0}^{s}z_{n-i}} \end{equation*} $ where $ n\in \mathbb{N}_{0} = \; \mathbb{N} \cup \left\{
Externí odkaz:
https://doaj.org/article/01e098e5a4d84bdb8b135f0c1034e152
Publikováno v:
Mathematical Biosciences and Engineering, Vol 18, Iss 5, Pp 5392-5408 (2021)
In this paper, we present a detailed study of the following system of difference equations $ \begin{equation*} x_{n+1} = \frac{a}{1+y_{n}x_{n-1}}, \ y_{n+1} = \frac{b}{1+x_{n}y_{n-1}}, \ n\in\mathbb{N}_{0}, \end{equation*} $ where the parameter
Externí odkaz:
https://doaj.org/article/574b60b4e811461a8aea8149e40f1e93
Autor:
Durhasan Turgut Tollu
Publikováno v:
Journal of Mathematics, Vol 2020 (2020)
This paper is dealt with the following system of difference equations xn+1=an/xn+bn/yn,yn+1=cn/xn+dn/yn, where n∈ℕ0=ℕ∪0, the initial values x0 and y0 are the positive real numbers, and the sequences ann≥0, bnn≥0, cnn≥0, and dnn≥0 are
Externí odkaz:
https://doaj.org/article/f5a7c8b07c0c4d73b2967f0f56bb1c32
Publikováno v:
Hittite Journal of Science and Engineering, Vol 5, Iss 2, Pp 119-123 (2018)
I n this paper, we show that the system of difference equations 1 11 0 , , , N , 111 n n nn nn n nn n n n n n n xy yz zx xyz n xy yz zx + ++ + ++ = = = ∈ +++ where the initial values xyz , , are real numbers, are solvable in explicit form via some
Externí odkaz:
https://doaj.org/article/c33c60e335db4e59b188ba833f5f9e90
Publikováno v:
Mathematical Biosciences and Engineering, Vol 18, Iss 5, Pp 5392-5408 (2021)
In this paper, we present a detailed study of the following system of difference equations $ \begin{equation*} x_{n+1} = \frac{a}{1+y_{n}x_{n-1}}, \ y_{n+1} = \frac{b}{1+x_{n}y_{n-1}}, \ n\in\mathbb{N}_{0}, \end{equation*} $ where the parameters $ a
Publikováno v:
Volume: 49, Issue: 5 1566-1593
Hacettepe Journal of Mathematics and Statistics
Hacettepe Journal of Mathematics and Statistics
*Kara, Merve ( Aksaray, Yazar )
In this paper we show that the system of difference equations xn = ayn-k + dyn-kxn-(k+l)/bxn-(k+l) + cyn-l, yn = αxn-k + δxn-kyn-(k+l)/βyn-(k+l) + γxn-l, where n ε ℕ0, k and l are positive integers, the par
In this paper we show that the system of difference equations xn = ayn-k + dyn-kxn-(k+l)/bxn-(k+l) + cyn-l, yn = αxn-k + δxn-kyn-(k+l)/βyn-(k+l) + γxn-l, where n ε ℕ0, k and l are positive integers, the par
Publikováno v:
Advanced Studies: Euro-Tbilisi Mathematical Journal. 14
Publikováno v:
Tbilisi Math. J. 13, iss. 4 (2020), 49-64
*Kara, Merve ( Aksaray, Yazar )
In this paper, we investigate the following system of difference equations x(n+1) = alpha(n)/1 + y(n)x(n-1), y(n+1) = beta(n)/1 + x(n)y(n-1), n is an element of N-0, where the sequences (alpha(n))(n is an element
In this paper, we investigate the following system of difference equations x(n+1) = alpha(n)/1 + y(n)x(n-1), y(n+1) = beta(n)/1 + x(n)y(n-1), n is an element of N-0, where the sequences (alpha(n))(n is an element
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7f9b8cc5261eef5bd211f5c2ba13e2f5
https://projecteuclid.org/euclid.tbilisi/1608606049
https://projecteuclid.org/euclid.tbilisi/1608606049
Publikováno v:
Mathematical Problems in Engineering, Vol 2020 (2020)
In this paper, we deal with the global behavior of the positive solutions of the system of k -difference equations u n + 1 1 = α 1 u n − 1 1 / β 1 + α 1 u n − 2 2 r 1 , u n + 1 2 = α 2 u n − 1 2 / β 2 + α 2 u n − 2 3 r 2 , … , u n + 1