Zobrazeno 1 - 10
of 65
pro vyhledávání: '"Durban, María"'
The use of discretized variables in the development of prediction models is a common practice, in part because the decision-making process is more natural when it is based on rules created from segmented models. Although this practice is perhaps more
Externí odkaz:
http://arxiv.org/abs/2403.11983
Autor:
Hernandez-Amaro, Pavel, Durban, Maria, Aguilera-Morillo, M. Carmen, Gonzalez, Cristobal Esteban, Arostegui, Inmaculada
Physical activity plays a significant role in the well-being of individuals with Chronic obstructive Pulmonary Disease (COPD). Specifically, it has been directly associated with changes in hospitalization rates for these patients. However, previous i
Externí odkaz:
http://arxiv.org/abs/2401.05839
Publikováno v:
In Expert Systems With Applications 1 December 2024 255 Part C
Autor:
Rodríguez-Álvarez, María Xosé, Durbán, María, Eilers, Paul H. C., Lee, Dae-Jin, Gonzalez, Francisco
P-spline models have achieved great popularity both in statistical and in applied research. A possible drawback of P-spline is that they assume a smooth transition of the covariate effect across its whole domain. In some practical applications, howev
Externí odkaz:
http://arxiv.org/abs/2010.03828
Publikováno v:
In Applied Mathematics and Computation 15 March 2023 441
Publikováno v:
Statistics and Computing, 2018
We present a novel method for the estimation of variance parameters in generalised linear mixed models. The method has its roots in Harville (1977)'s work, but it is able to deal with models that have a precision matrix for the random-effect vector t
Externí odkaz:
http://arxiv.org/abs/1801.07278
Data analysed here derive from experiments conducted to study neurons' activity in the visual cortex of behaving monkeys. We consider a spatio-temporal adaptive penalized spline (P-spline) approach for modelling the firing rate of visual neurons. To
Externí odkaz:
http://arxiv.org/abs/1610.06860
A fast and stable algorithm for estimating multidimensional adaptive P-spline models is presented. We call it as Separation of Overlapping Penalties (SOP) as it is an extension of the \textit{Separation of Anisotropic Penalties} (SAP) algorithm. SAP
Externí odkaz:
http://arxiv.org/abs/1610.06861
Publikováno v:
Region: the journal of ERSA, 9, 2, R1-R15
This article introduces a new R package (pspatreg) for the estimation of semiparametric spatial autoregressive models. pspatreg fits penalized spline semiparametric spatial autoregressive models via Restricted Maximum Likelihood or Maximum Likelihood
Externí odkaz:
https://www.ssoar.info/ssoar/handle/document/83438
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.