Zobrazeno 1 - 10
of 22
pro vyhledávání: '"Dunkum, Molly W."'
`Terquem's problem' is a name given in the twentieth century to the problem of enumerating certain integer sequences whose entries alternate in parity. In particular, this problem asks for the count of strictly increasing length $m$ sequences of posi
Externí odkaz:
http://arxiv.org/abs/2303.05949
We construct every finite-dimensional irreducible representation of the simple Lie algebra of type $\mathsf{E}_{7}$ whose highest weight is a nonnegative integer multiple of the dominant minuscule weight associated with the type $\mathsf{E}_{7}$ root
Externí odkaz:
http://arxiv.org/abs/2109.02835
Publikováno v:
Involve 16 (2023) 201-226
We present a family of rank symmetric diamond-colored distributive lattices that are naturally related to the Fibonacci sequence and certain of its generalizations. These lattices re-interpret and unify descriptions of some un- or differently-colored
Externí odkaz:
http://arxiv.org/abs/2012.14991
Autor:
Donnelly, Robert G., Dunkum, Molly W.
We generalize the famous weight basis constructions of the finite-dimensional irreducible representations of $\mathfrak{sl}(n,\mathbb{C})$ obtained by Gelfand and Tsetlin in 1950. Using combinatorial methods, we construct one such basis for each fini
Externí odkaz:
http://arxiv.org/abs/2012.14986
We consider various properties and manifestations of some sign-alternating univariate polynomials borne of right-triangular integer arrays related to certain generalizations of the Fibonacci sequence. Using a theory of the root geometry of polynomial
Externí odkaz:
http://arxiv.org/abs/2012.14993
A "truncation" of Pascal's triangle is a triangular array of numbers that satisfies the usual Pascal recurrence but with a boundary condition that declares some terminal set of numbers along each row of the array to be zero. Presented here is a famil
Externí odkaz:
http://arxiv.org/abs/1807.08181
Autor:
Donnelly, Robert G., Dunkum, Molly W.
Publikováno v:
In Advances in Applied Mathematics August 2022 139
The move-minimizing puzzles presented here are certain types of one-player combinatorial games that are shown to have explicit solutions whenever they can be encoded in a certain way as diamond-colored modular or distributive lattices. Our work here
Externí odkaz:
http://arxiv.org/abs/1710.01597
Autor:
Donnelly, Robert G., Dunkum, Molly W.
Publikováno v:
The American Mathematical Monthly, 2019 Feb 01. 126(2), 179-179.
Externí odkaz:
https://www.jstor.org/stable/48662477
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.