Zobrazeno 1 - 10
of 105
pro vyhledávání: '"Dumnicki, Marcin"'
Autor:
Dumnicki, Marcin, Farnik, Lucja, Hanumanthu, Krishna, Malara, Grzegorz, Szemberg, Tomasz, Szpond, Justyna, Tutaj-Gasinska, Halszka
We study negative curves on surfaces obtained by blowing up special configurations of points in the complex projective palne. Our main results concern the following configurations: very general points on a cubic, 3-torsion points on an elliptic curve
Externí odkaz:
http://arxiv.org/abs/1909.05899
Autor:
Dumnicki, Marcin, Farnik, Lucja, Harbourne, Brian, Malara, Grzegorz, Szpond, Justyna, Tutaj-Gasinska, Halszka
The aim of this note is to give a generalization of some results concerning unexpected hypersurfaces. Unexpected hypersurfaces occur when the actual dimension of the space of forms satisfying certain vanishing data is positive and the imposed vanishi
Externí odkaz:
http://arxiv.org/abs/1907.04832
The Waldschmidt constant $\alphahat(I)$ of a radical ideal $I$ in the coordinate ring of $\PP^N$ measures (asymptotically) the degree of a hypersurface passing through the set defined by $I$ in $\PP^N$. Nagata's approach to the 14th Hilbert Problem w
Externí odkaz:
http://arxiv.org/abs/1803.02387
In this note we introduce a Waldschmidt decomposition of divisors which might be viewed as a generalization of Zariski decomposition based on the effectivity rather than the nefness of divisors. As an immediate application we prove a recursive formul
Externí odkaz:
http://arxiv.org/abs/1802.08699
In the paper we prove the containment $I^{(nm)}\subset M^{(n-1)m}I^m$, for a radical ideal $I$ of $s$ general points in $\mathbb{P}^n$, where $s\geq 2^n$. As a corollary we get that the Chudnovsky Conjecture holds for a very general set of at least $
Externí odkaz:
http://arxiv.org/abs/1603.03708
Publikováno v:
Electron. Res. Announc., vol. 23 (2016), 8-18
In the paper we give an upper bound for the Waldschmidt constants of the wide class of ideals. This generalizes the result obtained by Dumnicki, Harbourne, Szemberg and Tutaj-Gasinska, Adv. Math. 2014. Our bound is given by a root of a suitable deriv
Externí odkaz:
http://arxiv.org/abs/1511.07633
Publikováno v:
Finite Fields Appl. 51 (2018), 371-387
In the present note we study absolute linear Harbourne constants. These are invariants which were introduced in order to relate the lower bounds on the selfintersection of negative curves on birationally equivalent surfaces to the complexity of the b
Externí odkaz:
http://arxiv.org/abs/1507.04080
Publikováno v:
J. Pure Appl. Algebra 220 (2016), 2001-2016
We study initial sequences of various configurations of planar points. We answer several questions asked in our previous paper (Symbolic powers of planar point configurations), and we extend our considerations to the asymptotic setting of Waldschmidt
Externí odkaz:
http://arxiv.org/abs/1504.05548
Autor:
Dumnicki, Marcin, Farnik, Łucja, Harbourne, Brian, Malara, Grzegorz, Szpond, Justyna, Tutaj-Gasińska, Halszka
Publikováno v:
In Linear Algebra and Its Applications 1 May 2020 592:113-133
Autor:
Czaplinski, Adam, Dumnicki, Marcin, Farnik, Lucja, Gwozdziewicz, Janusz, Lampa-Baczynska, Magdalena, Malara, Grzegorz, Szemberg, Tomasz, Szpond, Justyna, Tutaj-Gasinska, Halszka
Publikováno v:
Rend. Sem. Mat. Univ. Padova 136 (2016), 191-203
In the present note we give a new proof of a result due to Wiseman and Wilson which establishes an analogue of the Sylvester-Gallai theorem valid for curves of degree two. The main ingredients of the proof come from algebraic geometry. Specifically,
Externí odkaz:
http://arxiv.org/abs/1411.2648