Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Dumas, Maël"'
Autor:
Dallard, Clément, Dumas, Maël, Hilaire, Claire, Milanič, Martin, Perez, Anthony, Trotignon, Nicolas
We consider a natural generalization of chordal graphs, in which every minimal separator induces a subgraph with independence number at most $2$. Such graphs can be equivalently defined as graphs that do not contain the complete bipartite graph $K_{2
Externí odkaz:
http://arxiv.org/abs/2402.08332
Autor:
Dumas, Maël, Perez, Anthony
In the Trivially Perfect Editing problem one is given an undirected graph $G = (V,E)$ and an integer $k$ and seeks to add or delete at most $k$ edges in $G$ to obtain a trivially perfect graph. In a recent work, Dumas, Perez and Todinca [Algorithmica
Externí odkaz:
http://arxiv.org/abs/2306.16899
We show that if the edges or vertices of an undirected graph $G$ can be covered by $k$ shortest paths, then the pathwidth of $G$ is upper-bounded by a single-exponential function of $k$. As a corollary, we prove that the problem Isometric Path Cover
Externí odkaz:
http://arxiv.org/abs/2206.15088
We consider edge modification problems towards block and strictly chordal graphs, where one is given an undirected graph $G = (V,E)$ and an integer $k \in \mathbb{N}$ and seeks to edit (add or delete) at most $k$ edges from $G$ to obtain a block grap
Externí odkaz:
http://arxiv.org/abs/2201.13140
We consider the Trivially Perfect Editing problem, where one is given an undirected graph $G = (V,E)$ and a parameter $k \in \mathbb{N}$ and seeks to edit (add or delete) at most $k$ edges from $G$ to obtain a trivially perfect graph. The related Tri
Externí odkaz:
http://arxiv.org/abs/2105.08549
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Algorithmica; Apr2023, Vol. 85 Issue 4, p1091-1110, 20p
Publikováno v:
16th International Symposium on Parameterized and Exact Computation, IPEC
16th International Symposium on Parameterized and Exact Computation, IPEC, Sep 2021, Lisbonne (online), Portugal. pp.17:1--17:16
16th International Symposium on Parameterized and Exact Computation, IPEC, Sep 2021, Lisbonne (online), Portugal. pp.17:1--17:16
We consider the Strictly Chordal Editing problem, where one is given an undirected graph G = (V,E) and a parameter k ��� ��� and seeks to edit (add or delete) at most k edges from G to obtain a strictly chordal graph. Problems Strictly Ch
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::50ef5b9401b4f542efefeb8b6ad67a19
https://hal.archives-ouvertes.fr/hal-03483395
https://hal.archives-ouvertes.fr/hal-03483395