Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Duckworth, W. Ethan"'
Autor:
Duckworth, W. Ethan
This paper describes how to use subgroups to parameterize unipotent classes in the classical algebraic group in characteristic 2. These results can be viewed as an extension of the Bala-Carter Theorem, and give a convenient way to compare unipotent c
Externí odkaz:
http://arxiv.org/abs/math/0309447
Autor:
Duckworth, W. Ethan
Let $G$ be a classical algebraic group, $X$ a maximal rank reductive subgroup and $P$ a parabolic subgroup. This paper classifies when $X\G/P$ is finite. Finiteness is proven using geometric arguments about the action of $X$ on subspaces of the natur
Externí odkaz:
http://arxiv.org/abs/math/0309446
Autor:
Duckworth, W. Ethan
This paper provides new, relatively simple proofs of some important results about unipotent classes in simple linear algebraic groups. We derive the formula for the Jordan blocks of the Richardson class of a parabolic subgroup of a classical group. T
Externí odkaz:
http://arxiv.org/abs/math/0308058
Autor:
Duckworth, W. Ethan
Let $G$ be a linear algebraic group defined over an algebraically closed field. The double coset question addressed in this paper is the following: Given closed subgroups $X$ and $P$, is the double coset collection $X\backslash G/P$ finite or infinit
Externí odkaz:
http://arxiv.org/abs/math/0305256
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Duckworth, W. Ethan
Publikováno v:
International Journal of Mathematical Education in Science & Technology; 2008, Vol. 39 Issue 4, p473-490, 18p, 3 Diagrams, 1 Chart
Autor:
Duckworth, W. Ethan1 duck@math.rutgers.edu
Publikováno v:
Journal of Algebra. Mar2004, Vol. 273 Issue 2, p718. 16p.