Zobrazeno 1 - 10
of 75
pro vyhledávání: '"Dubédat, Julien"'
Autor:
Dubédat, Julien, Falconet, Hugo
In the Ising and Potts model, random cluster representations provide a geometric interpretation to spin correlations. We discuss similar constructions for the Villain and XY models, where spins take values in the circle, as well as extensions to mode
Externí odkaz:
http://arxiv.org/abs/2210.03620
Autor:
Dubédat, Julien, Falconet, Hugo
We consider the metric growth in Liouville quantum gravity (LQG) for $\gamma \in (0,2)$. We show that a process associated with the trace of the free field on the boundary of a filled LQG ball is stationary, for every $\gamma \in (0,2)$. The infinite
Externí odkaz:
http://arxiv.org/abs/2112.13933
Liouville quantum gravity (LQG) is a one-parameter family of models of random fractal surfaces which first appeared in the physics literature in the 1980s. Recent works have constructed a metric (distance function) on an LQG surface. We give an overv
Externí odkaz:
http://arxiv.org/abs/2109.01252
For $\gamma \in (0,2)$, we define a weak $\gamma$-Liouville quantum gravity (LQG) metric to be a function $h\mapsto D_h$ which takes in an instance of the planar Gaussian free field (GFF) and outputs a metric on the plane satisfying a certain list of
Externí odkaz:
http://arxiv.org/abs/1905.00380
Autor:
Dubédat, Julien, Shen, Hao
In this paper we introduce the stochastic Ricci flow (SRF) in two spatial dimensions. The flow is symmetric with respect to a measure induced by Liouville Conformal Field Theory. Using the theory of Dirichlet forms, we construct a weak solution to th
Externí odkaz:
http://arxiv.org/abs/1904.10909
We study Liouville first passage percolation metrics associated to a Gaussian free field $h$ mollified by the two-dimensional heat kernel $p_t$ in the bulk, and related star-scale invariant metrics. For $\gamma \in (0,2)$ and $\xi = \frac{\gamma}{d_{
Externí odkaz:
http://arxiv.org/abs/1904.08021
Autor:
Dubédat, Julien, Falconet, Hugo
We study the Liouville metric associated to an approximation of a log-correlated Gaussian field with short range correlation. We show that below a parameter $\gamma_c >0$, the left-right length of rectangles for the Riemannian metric $e^{\gamma \phi_
Externí odkaz:
http://arxiv.org/abs/1809.02607
Autor:
Dubédat, Julien1 (AUTHOR), Falconet, Hugo2 (AUTHOR) hfalconet@gmail.com
Publikováno v:
Communications in Mathematical Physics. Jun2023, Vol. 400 Issue 2, p1317-1383. 67p.
Autor:
Dubédat, Julien, Gheissari, Reza
The dimer model is an exactly solvable model of planar statistical mechanics. In its critical phase, various aspects of its scaling limit are known to be described by the Gaussian free field. For periodic graphs, criticality is an algebraic condition
Externí odkaz:
http://arxiv.org/abs/1407.6227
Autor:
Benoist, Stéphane, Dubédat, Julien
Publikováno v:
Ann. Inst. H. Poincar\'e Probab. Statist. 52 (2016), no. 3, 1406--1436
There is an essentially unique way to associate to any Riemann surface a measure on its simple loops, such that the collection of measures satisfy a strong conformal invariance property. Wendelin Werner constructed these random simple loops as bounda
Externí odkaz:
http://arxiv.org/abs/1405.7880