Zobrazeno 1 - 10
of 396
pro vyhledávání: '"Du Zhibin"'
Publikováno v:
Open Mathematics, Vol 19, Iss 1, Pp 505-514 (2021)
In this paper, we disprove a remaining conjecture about Bohemian matrices, in which the numbers of distinct determinants of a normalized Bohemian upper-Hessenberg matrix were conjectured.
Externí odkaz:
https://doaj.org/article/7618503d50804d45b21c25ada4105938
Autor:
Du Zhibin, da Fonseca Carlos M.
Publikováno v:
Discussiones Mathematicae Graph Theory, Vol 40, Iss 2, Pp 525-532 (2020)
Let A be a real symmetric matrix. If after we delete a row and a column of the same index, the nullity increases by one, we call that index a P-vertex of A. When A is an n × n singular acyclic matrix, it is known that the maximum number of P-vertice
Externí odkaz:
https://doaj.org/article/313ad6779cc04528bd60729f0c41a1a3
Autor:
Amanbek Yerlan, Du Zhibin, Erlangga Yogi, da Fonseca Carlos M., Kurmanbek Bakytzhan, Pereira António
Publikováno v:
Open Mathematics, Vol 18, Iss 1, Pp 1227-1229 (2020)
In this short note, we provide a brief proof for a recent determinantal formula involving a particular family of banded matrices.
Externí odkaz:
https://doaj.org/article/feb7eb4e3577492f8fe519924a72adf2
Autor:
Cooper, Joshua, Du, Zhibin
The Steiner distance of a set of vertices in a graph is the fewest number of edges in any connected subgraph containing those vertices. The order-$k$ Steiner distance hypermatrix of an $n$-vertex graph is the $n \times \cdots \times n$ ($k$ terms) ar
Externí odkaz:
http://arxiv.org/abs/2403.02287
Autor:
Du Zhibin, da Fonseca Carlos M.
Publikováno v:
Open Mathematics, Vol 14, Iss 1, Pp 832-840 (2016)
In this work we show that the Bruhat rank of a symmetric (0,1)-matrix of order n with a staircase pattern, total support, and containing In, is at most 2. Several other related questions are also discussed. Some illustrative examples are presented.
Externí odkaz:
https://doaj.org/article/b2440b51479343c89f0b24797bcd811c
Autor:
Dimitrov, Darko, Du, Zhibin
The problem of characterizing trees with minimal atom-bond-connectivity index (minimal-ABC trees) has a reputation as one of the most demanding recent open optimization problems in mathematical chemistry. Here firstly, we give an affirmative answer t
Externí odkaz:
http://arxiv.org/abs/2110.14712
Autor:
Du, Zhibin, Huang, Yinhao
Publikováno v:
In Applied Mathematics and Computation 15 August 2024 475
Autor:
He, Lewei, Chen, Bingzhi, Liu, Qimin, Chen, Hao, Li, Hua, Chow, Wai Tuck, Tang, Jiaoning, Du, Zhibin, He, Yang, Pan, Jiahui
Publikováno v:
In Additive Manufacturing 5 June 2024 89