Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Du, Xiying"'
Autor:
Du, Xiying, McCarty, Rose
Suppose a graph has no large balanced bicliques, but has large minimum degree. Then what can we say about its induced subgraphs? This question motivates the study of degree-boundedness, which is like $\chi$-boundedness but for minimum degree instead
Externí odkaz:
http://arxiv.org/abs/2403.05737
We prove that there exists a constant $C$ so that, for all $s,k \in \mathbb{N}$, if $G$ has average degree at least $k^{Cs^3}$ and does not contain $K_{s,s}$ as a subgraph then it contains an induced subgraph which is $C_4$-free and has average degre
Externí odkaz:
http://arxiv.org/abs/2307.08361
We say that a graph $G$ is $(2,m)$-linked if, for any distinct vertices $a_1,\ldots, a_m, b_1,b_2$ in $G$, there exist vertex disjoint connected subgraphs $A,B$ of $G$ such that $\{a_1, \ldots, a_m\}$ is contained in $A$ and $\{b_1,b_2\}$ is containe
Externí odkaz:
http://arxiv.org/abs/2303.12146
Publikováno v:
In Journal of Combinatorial Theory, Series B November 2024 169:211-232
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
We prove that there exists a constant $C$ so that for all $s,k \in \mathbb{N}$, every $K_{s,s}$-free graph with average degree at least $k^{Cs^3}$ contains an induced subgraph which is $C_4$-free and has average degree at least $k$. It was known that
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::312c85138377e51e9b991463833a5854
http://arxiv.org/abs/2307.08361
http://arxiv.org/abs/2307.08361