Zobrazeno 1 - 10
of 155
pro vyhledávání: '"Du, Xiuquan"'
Publikováno v:
In Medical Image Analysis January 2025 99
Automatic and accurate lesion segmentation is critical for clinically estimating the lesion statuses of stroke diseases and developing appropriate diagnostic systems. Although existing methods have achieved remarkable results, further adoption of the
Externí odkaz:
http://arxiv.org/abs/2202.13687
Autor:
Yang, Guang, Chen, Jun, Gao, Zhifan, Li, Shuo, Ni, Hao, Angelini, Elsa, Wong, Tom, Mohiaddin, Raad, Nyktari, Eva, Wage, Ricardo, Xu, Lei, Zhang, Yanping, Du, Xiuquan, Zhang, Heye, Firmin, David, Keegan, Jennifer
Three-dimensional late gadolinium enhanced (LGE) cardiac MR (CMR) of left atrial scar in patients with atrial fibrillation (AF) has recently emerged as a promising technique to stratify patients, to guide ablation therapy and to predict treatment suc
Externí odkaz:
http://arxiv.org/abs/2002.00440
Publikováno v:
In Computers in Biology and Medicine August 2023 162
Publikováno v:
In Computers in Biology and Medicine June 2023 159
Autor:
Du, Xiuquan, Zhao, Yuefan
Publikováno v:
In Computers in Biology and Medicine May 2023 157
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Chen, Jun, Yang, Guang, Gao, Zhifan, Ni, Hao, Angelini, Elsa, Mohiaddin, Raad, Wong, Tom, Zhang, Yanping, Du, Xiuquan, Zhang, Heye, Keegan, Jennifer, Firmin, David
Late Gadolinium Enhanced Cardiac MRI (LGE-CMRI) for detecting atrial scars in atrial fibrillation (AF) patients has recently emerged as a promising technique to stratify patients, guide ablation therapy and predict treatment success. Visualisation an
Externí odkaz:
http://arxiv.org/abs/1806.04597
JLCRB: A unified multi-view-based joint representation learning for CircRNA binding sites prediction
Autor:
Du, Xiuquan, Xue, Zhigang
Publikováno v:
In Journal of Biomedical Informatics December 2022 136
Autor:
Xu, Chenchu, Xu, Lei, Gao, Zhifan, zhao, Shen, Zhang, Heye, Zhang, Yanping, Du, Xiuquan, Zhao, Shu, Ghista, Dhanjoo, Li, Shuo
Accurate detection of the myocardial infarction (MI) area is crucial for early diagnosis planning and follow-up management. In this study, we propose an end-to-end deep-learning algorithm framework (OF-RNN ) to accurately detect the MI area at the pi
Externí odkaz:
http://arxiv.org/abs/1706.03182