Zobrazeno 1 - 10
of 55
pro vyhledávání: '"Dryden, Emily B."'
We explore the Steklov eigenvalue problem on convex polygons, focusing mainly on the inverse Steklov problem. Our primary finding reveals that, for almost all convex polygonal domains, there exist at most finitely many non-congruent domains with the
Externí odkaz:
http://arxiv.org/abs/2408.01529
Autor:
Arias-Marco, Teresa, Dryden, Emily B., Gordon, Carolyn S., Hassannezhad, Asma, Ray, Allie, Stanhope, Elizabeth
We consider three different questions related to the Steklov and mixed Steklov problems on surfaces. These questions are connected by the techniques that we use to study them, which exploit symmetry in various ways even though the surfaces we study d
Externí odkaz:
http://arxiv.org/abs/2301.09010
Autor:
Arias-Marco, Teresa, Dryden, Emily B., Gordon, Carolyn S., Hassannezhad, Asma, Ray, Allie, Stanhope, Elizabeth
Publikováno v:
In Journal of Mathematical Analysis and Applications 15 June 2024 534(2)
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Arias-Marco, Teresa, Dryden, Emily B., Gordon, Carolyn S., Hassannezhad, Asma, Ray, Allie, Stanhope, Elizabeth
We consider how the geometry and topology of a compact $n$-dimensional Riemannian orbifold with boundary relates to its Steklov spectrum. In two dimensions, motivated by work of A. Girouard, L. Parnovski, I. Polterovich and D. Sher in the manifold se
Externí odkaz:
http://arxiv.org/abs/1609.05142
We study estimates involving the principal Dirichlet eigenvalue associated to a smoothly bounded domain in a complete Riemannian manifold and L1-norms of exit time moments of Brownian motion. Our results generalize a classical inequality of Polya.
Externí odkaz:
http://arxiv.org/abs/1608.08722
We prove an inverse spectral result for $S^1$-invariant metrics on $S^2$ based on the so-called asymptotic equivariant spectrum. This is roughly the spectrum together with large weights of the $S^1$ action on the eigenspaces. Our result generalizes a
Externí odkaz:
http://arxiv.org/abs/1501.02830
We prove inverse spectral results for differential operators on manifolds and orbifolds invariant under a torus action. These inverse spectral results involve the asymptotic equivariant spectrum, which is the spectrum itself together with "very large
Externí odkaz:
http://arxiv.org/abs/1401.8285
Let O be a symplectic toric 2n-dimensional orbifold with a fixed T^n-action and with a toric Kahler metric g. We previously explored whether, when O is a manifold, the equivariant spectrum of the Laplace operator acting on smooth functions on (O,g) d
Externí odkaz:
http://arxiv.org/abs/1107.0986
Publikováno v:
Mathematische Nachrichten, Volume 288, 2, 126-361 (2015)
We consider the heat operator acting on differential forms on spaces with complete and incomplete edge metrics. In the latter case we study the heat operator of the Hodge Laplacian with algebraic boundary conditions at the edge singularity. We establ
Externí odkaz:
http://arxiv.org/abs/1105.5119