Zobrazeno 1 - 10
of 34
pro vyhledávání: '"Druzhinin, Andrei"'
Autor:
Druzhinin, Andrei, Sande, Ola
For any base field and integer $l$ invertible in $k$, we prove that $\Omega^\infty_{\mathbb{G}_m}$ and $\Omega^\infty_{\mathbb{P}^1}$ commute with hyper \'etale sheafification $L_{\acute{e}t}$ and Betti realization through infinite loop space theory
Externí odkaz:
http://arxiv.org/abs/2408.09990
Autor:
Druzhinin, Andrei
Using the trivial fiber topology we describe motivic $\infty$-loop spaces and fibrant replacements in the motivic stable homotopy category $\mathbf{SH}_{\mathbb{A}^1,\mathrm{Nis}}(B)$ defined over one-dimensional base schemes $B$.
Externí odkaz:
http://arxiv.org/abs/2112.07565
Autor:
Druzhinin, Andrei, Sosnilo, Vladimir
In this note, we construct an equivalence of $\infty$-categories \[ \mathbf{H}^{\mathrm{fr},\mathrm{gp}}(S) \simeq \mathbf{H}^{\mathrm{fr},\mathrm{gp}}_{\mathrm{zf}}(S) \] of group-like framed motivic spaces with respect to the Nisnevich topology and
Externí odkaz:
http://arxiv.org/abs/2108.08257
Autor:
Druzhinin, Andrei
We extend the generality of the theory of framed motives by G.~Garkusha and I.~Panin to the case of an arbitrary base field. This theory plays a fundamental role and allows to get explicit computations of stable motivic homotopy types. We prove in th
Externí odkaz:
http://arxiv.org/abs/2108.01006
Autor:
Druzhinin, Andrei
We construct geometric models for the $\mathbb P^1$-spectrum $M_{\mathbb P^1}(Y)$, which computes in Garkusha-Panin's theory of framed motives \cite{GP14} a positively motivically fibrant $\Omega_{\mathbb P^1}$ replacement of $\Sigma_{\mathbb P^1}^\i
Externí odkaz:
http://arxiv.org/abs/1811.11086
We extend the results of G.~Garkusha and I.~Panin on framed motives of algebraic varieties [4] to the case of a finite base field, and extend the computation of the zeroth cohomology group $H^0(\mathbb ZF(\Delta^\bullet_k,\mathbf G^{\wedge n}_m))=K^{
Externí odkaz:
http://arxiv.org/abs/1809.03238
Autor:
Druzhinin, Andrei, Panin, Ivan
The category of framed correspondences Fr_*(k), framed presheaves and framed sheaves were invented by Voevodsky in his unpublished notes [17]. Based on the notes [17] a new approach to the classical Morel--Voevodsky motivic stable homotopy theory was
Externí odkaz:
http://arxiv.org/abs/1808.07765
Autor:
Druzhinin, Andrei, Kolderup, Håkon
Publikováno v:
Algebr. Geom. Topol. 20 (2020) 1487-1541
We prove that homotopy invariance and cancellation properties are satisfied by any linear category of correspondences that is defined, via Calm\`es and Fasel's construction, by an underlying cohomology theory. In particular, this includes any categor
Externí odkaz:
http://arxiv.org/abs/1808.05803
Autor:
Druzhinin, Andrei
The category of effective Grothendieck-Witt-motives $\mathbf{DM}^{GW}_{\mathrm{eff},-}(k)$ (and Witt-motives $\mathbf{DM}^W_{\mathrm{eff},-}(k)$) by Voevodsky-Suslin method starting with some category of GW-correspondences (and Witt-correspondences)
Externí odkaz:
http://arxiv.org/abs/1709.06273
Autor:
Druzhinin, Andrei
The cancellation theorem for Grothendieck-Witt-correspondences and Witt-correspondences between smooth varieties over an infinite prefect field $k$, $char k \neq 2$, is proved, the isomorphism $$Hom_{\mathbf{DM}^\mathrm{GW}_\mathrm{eff}}(A^\bullet,B^
Externí odkaz:
http://arxiv.org/abs/1709.06543