Zobrazeno 1 - 10
of 275
pro vyhledávání: '"Dritschel, David"'
Two-dimensional Euler flows, in the plane or on simple surfaces, possess a material invariant, namely the scalar vorticity normal to the surface. Consequently, flows with piecewise-uniform vorticity remain that way, and moreover evolve in a way which
Externí odkaz:
http://arxiv.org/abs/2410.09610
We study an asymptotic nonlinear model for filamention on two-dimensional vorticity interfaces. Different re-formulations of the model equation reveal its underlying structural properties. They enable us to construct global weak solutions and to prov
Externí odkaz:
http://arxiv.org/abs/2410.07807
Autor:
Leith, Peter E. D., Leggat, Alasdair Dorkenoo, Hooley, Chris A., Horne, Keith, Dritschel, David G.
We present localized 'particle-like' states composed of a pair of neutral fermions interacting with a scalar Higgs field and the metric of spacetime, extending the Einstein-Dirac formalism introduced by Finster, Smoller, and Yau [Phys. Rev. D 59, 104
Externí odkaz:
http://arxiv.org/abs/2202.03228
Publikováno v:
Phys. Rev. D 104, 046024 (2021)
We present an analysis of excited-state solutions for a gravitationally localized system consisting of a filled shell of high-angular-momentum fermions, using the Einstein-Dirac formalism introduced by Finster, Smoller, and Yau [Phys. Rev. D 59, 1040
Externí odkaz:
http://arxiv.org/abs/2105.12672
Publikováno v:
Phys. Rev. D 101, 106012 (2020)
We analyze gravitationally localized states of multiple fermions with high angular momenta, in the formalism introduced by Finster, Smoller, and Yau [Phys Rev. D 59, 104020 (1999)]. We show that the resulting soliton-like wave functions can be natura
Externí odkaz:
http://arxiv.org/abs/2002.02747
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
In Journal of Computational Physics: X November 2023 17
Publikováno v:
In Journal of Computational Physics: X November 2023 17
We study analytical and numerical aspects of the bifurcation diagram of simply-connected rotating vortex patch equilibria for the quasi-geostrophic shallow-water (QGSW) equations. The QGSW equations are a generalisation of the Euler equations and con
Externí odkaz:
http://arxiv.org/abs/1801.02092
Publikováno v:
In Physica D: Nonlinear Phenomena June 2022 434