Zobrazeno 1 - 10
of 79
pro vyhledávání: '"Drinfeld, Vladimir"'
Autor:
Drinfeld, Vladimir
We first recall Grothendieck's notion of n-truncated Barsotti-Tate group. Such groups form an algebraic stack over the integers. The problem is to give an illuminating description of its reductions modulo powers of p. A related problem is to construc
Externí odkaz:
http://arxiv.org/abs/2309.02346
Autor:
Drinfeld, Vladimir
In a 2013 article, Eike Lau constructed a canonical morphism from the stack of $n$-truncated Barsotti-Tate groups over $F_p$ to the stack of n-truncated displays. He also proved that this morphism is a gerbe banded by a commutative group scheme. In t
Externí odkaz:
http://arxiv.org/abs/2307.06194
Autor:
Drinfeld, Vladimir
Let G be a smooth group scheme over $F_p$ equipped with a $G_m$-action such that all weights of $G_m$ on the Lie algebra of G are not greater than 1. Let $Disp_n^G$ be Eike Lau's stack of n-truncated G-displays (this is an algebraic stack over $F_p$)
Externí odkaz:
http://arxiv.org/abs/2304.11709
Autor:
Drinfeld, Vladimir
Let Sigma denote the prismatization of Spf (Z_p). The multiplicative group over Sigma maps to the prismatization of the multiplicative group over Spf (Z_p). We prove that the kernel of this map is the Cartier dual of some 1-dimensional formal group o
Externí odkaz:
http://arxiv.org/abs/2107.11466
Autor:
Drinfeld, Vladimir
By a ring groupoid we mean an animated ring whose i-th homotopy groups are zero for all i>1. In this expository note we give an elementary treatment of the (2,1)-category of ring groupoids (i.e., without referring to general animated rings and withou
Externí odkaz:
http://arxiv.org/abs/2104.07090
Autor:
Drinfeld, Vladimir
The goal is to construct three related "prismatization" functors from the category of p-adic formal schemes to that of formal stacks. This should provide a good category of coefficients for prismatic cohomology in the spirit of F-gauges. In this arti
Externí odkaz:
http://arxiv.org/abs/2005.04746
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Drinfeld, Vladimir
Inspired by a theorem of Bhatt-Morrow-Scholze, we develop a stacky approach to crystals and isocrystals on "Frobenius-smooth" schemes over F_p . This class of schemes goes back to Berthelot-Messing and contains all smooth schemes over perfect fields
Externí odkaz:
http://arxiv.org/abs/1810.11853
Autor:
Drinfeld, Vladimir
Let G be the Tate module of a p-divisble group H over a perfect field k of characteristic p. A theorem of Scholze-Weinstein describes G (and therefore H itself) in terms of the Dieudonne module of H; more precisely, it describes G(C) for "good" semip
Externí odkaz:
http://arxiv.org/abs/1810.04292
Autor:
Drinfeld, Vladimir
We first prove the Grinberg-Kazhdan formal arc theorem without any assumptions on the characteristic. This part of the article is equivalent to arXiv:math-AG/0203263. Then we try to clarify the geometric ideas behind the proof by introducing the noti
Externí odkaz:
http://arxiv.org/abs/1801.01046