Zobrazeno 1 - 10
of 514
pro vyhledávání: '"Dress, Andreas"'
A (pseudo-)metric $D$ on a finite set $X$ is said to be a `tree metric' if there is a finite tree with leaf set $X$ and non-negative edge weights so that, for all $x,y \in X$, $D(x,y)$ is the path distance in the tree between $x$ and $y$. It is well
Externí odkaz:
http://arxiv.org/abs/1307.7287
Motivated by questions in biological classification, we discuss some elementary combinatorial and computational properties of certain set systems that generalize hierarchies, namely, 'patchworks', 'weak patchworks', 'ample patchworks' and 'saturated
Externí odkaz:
http://arxiv.org/abs/1202.2460
A hierarchical structure describing the inter-relationships of species has long been a fundamental concept in systematic biology, from Linnean classification through to the more recent quest for a 'Tree of Life.' In this paper we use an approach base
Externí odkaz:
http://arxiv.org/abs/0908.2885
Autor:
Dress, Andreas, Steel, Mike
Given a collection $\C$ of subsets of a finite set $X$, let $\bigcup \C = \cup_{S \in \C}S$. Philip Hall's celebrated theorem \cite{hall} concerning `systems of distinct representatives' tells us that for any collection $\C$ of subsets of $X$ there e
Externí odkaz:
http://arxiv.org/abs/0906.4271